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P and NP, 
approximation

EECS 477
Lecture 22, 12/03/2002

Complexity classes

P – class of decision problems that can 
be solved by a polynomial-time 
algorithm
NP – non-deterministic polynomial time
– Given a solution, it can be checked in 

polynomial time 
• given a cycle/tour – check?
• Composite number: given a factor easy to 

check (but to find one?)
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Theorems, conjectures

Theorem: P ⊆ NP
– If we can solve a problem then we can 

surely check it
The central open question:
Is P=NP or not? 

Conjecture: P≠NP
– Look at the hardest problems in NP

• Harder than any other problem in NP

Polynomial reduction

Polynomial reductions

Two problems A and B
A ≤p B : 
– A is polynomially reducible to B
– There is an algorithm for solving A in time 

that would be polynomial if we could solve arbitrary 
instances of B in unit time

– If both ways then they are polynomially 
equivalent: A ≡p B

– Transitive: if A ≤p B and B ≤p C then A ≤p C
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Example

HAM ≡p HAMD
– HAMD ≤p HAM

• Trivial: if HAMalgo finds a cycle then yes
– HAM ≤p HAMD

• First check if HAMDalgo gives yes for the 
original graph

• Start considering edges for removal one by one
– Apply HAMDalgo to the remaining 
– If still Hamiltonian without an edge then remove it
– Otherwise remove the edge and keep going
– Stop when a cycle is left, return it

Reduction function

Two decision problems X⊆I and Y⊆J
F: map I→J
such that F(x)∈Y if and only if x∈X 
Theorem: If F is computable in polynomial 

time then X ≤p Y
• bool DecideX(x) {

y = F(x);
if(DecideY(y)) return true;
else return false;

}
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Example

HAMD ≤p TSPD
– Given a graph G=(N,A), need to see if it is 

Hamiltonian
– Define F(G) be the TSPD instance with a 

complete graph (N,N×N)
• Cost = 1 if the edge in A and 2 otherwise
• TSPD bound being N
• If TSPD yes then that is a Hamiltonian cycle
• If TSPD no then no Hamiltonian cycle

NP-completeness

Decision problem X is NP-complete
1. X is in NP
2. Y ≤p X  for every problem Y in NP
X is polynomially harder than any 
other NP problem
If we know that X is NP-complete and 
X ≤p Z then Z is NP-complete
If we could only find one such X
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SAT: satisfiability

Given a boolean formula
– Is it satisfiable? is there an assignment of 

values to variables that will make it true?
• e.g. (p∧q)⇒(p∨q) is satisfiable via (p=q=true)
• CNF: conjunctive normal form

– SAT-CNF satisfiability for boolean 
expressions in CNF form

– Cook’s Theorem
• For any NP problem Y, Y ≤p SAT-CNF

NP-completeness

Now that we know one of NP-complete 
problems 
– We find a bunch of other ones
– All we need to show is

• that a problem X is in NP 
• and that SAT-CNF ≤p X 

– i.e. knowing that a polynomial algorithm for X would 
also mean that a polynomial algorithm exists for 
SAT-CNF

• Then X is NP-complete
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Some NP-complete problems

SAT
3SAT: clauses have three variables
3DM: 3D matching
HAMD: hamiltonian circuit
PARTITION: set A and s:A→Z+

– Partition A into two equally sized parts
CLIQUE: clique of size J or more
VERTEX COVER: of size K or less
K-COL: graph colorability with K colors or less

SAT-3-CNF is NP-complete

It is in NP
Will prove SAT-CNF ≤p SAT-3-CNF

• Given an instance of SAT-CNF construct an 
instance of SAT-3-CNF efficiently

Consider one clause: disjunction of K literals
K=3: done
K=4: C=(L1+L2+L3+L4) is satisfiable if and only if

C’=(L1+L2+U)(¬U+L3+L4) is satisfiable
if C is true then C’ is satisfiable, 
if C is false then no choice of U will make C’ true.
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SAT-3-CNF

When K>4: C=(L[1]+…+L[K])
C’ = 

(L[1]+L[2]+U[1])(¬U[1]+L[3]+U[2])…(U[K-
3]+L[K-1]+L[K])

Again C is true iff C’ is satisfiable
Many clauses
– Each with its own U’s

• For an instance of SAT-CNF built an instance 
of SAT-3-CNF

SAT-2-CNF

Is in P
– Formula (¬X+Y)(¬Z+¬Y)(¬Q+Z)(Q+¬X)

• Construct directed graph: two verts for each 
variable, edge from X to Y if there is a clause 
equiv to (¬X+Y) = ¬(¬Y) + (¬X) 

X

¬X ¬Y ¬Z ¬Q

Y Z Q
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SAT-2-CNF

Claim
• If there are paths from some N to ¬N and from 

¬N to N then the formula cannot be satisfied
• Otherwise it is satisfiable (example)

P

X

¬X ¬Y ¬Z ¬Q

Y Z Q

X ⇒Y
Y ⇒ ¬Z
¬Z ⇒ ¬Q
¬Q ⇒ ¬X
Hence
X ⇒ ¬X
Hmm…

HAM vs Eulerian 

Hamiltonian path 
– directed graph G=(V,E) and two vertices s,t∈V
– decide if there exists a path from s to t, which goes 

through each node once.
• NP-complete (can construct graph for a SAT-3-CNF 

instance)

Eulerian path
– undirected graph G=(V,E) and two vertices s≠t∈V
– decide if there exists a path from s to t, which goes 

through each edge exactly once.
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A theorem

Theorem: A connected graph has an
Eulerian path from s to t iff

1. s and t’s degrees are odd.
2. the degrees of the other vertices are 

even
So EULER is in P.

Can construct path by a polynomial 
algorithm?

NP-hard

X is NP-hard
– if there is an NP-complete problem Y that 

can be polynomially reduced to X
• Y ≤p X

– Does not have to be a decision problem
– Decision problem can be NP-hard but not 

in NP, for instance exact K-colorability
• Any K-coloring is a certificate for K-COL but not 

for K-COLE(exact: can color with K but no less)
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What about two colors?

Determine whether a graph is 2-vertex 
colorable
– A polynomial algorithm? 

• DFS/BFS?

Metric TSP

Undirected graph (complete)
Distance matrix satisfies
– Triangle inequality

d(x,z) <= d(x,y) + d(y,z)
• length(Hamiltonian cycle) >= 

length(Hamiltonian path) >= length(MST) 
– Construct an MST, tour around it will cost 

no more than 2*length(MST)
– tour with shortcuts <= 2 length(MST)


