P and NP , approximation

EECS 477
Lecture 22, 12/03/2002

Complexity classes

- P - class of decision problems that can be solved by a polynomial-time algorithm
- NP - non-deterministic polynomial time
- Given a solution, it can be checked in polynomial time
- given a cycle/tour - check?
- Composite number: given a factor easy to check (but to find one?)

Theorems, conjectures

\square Theorem: $\mathrm{P} \subseteq \mathrm{NP}$

- If we can solve a problem then we can surely check it
- The central open question:

Is $\mathrm{P}=\mathrm{NP}$ or not?

- Conjecture: $\mathrm{P} \neq \mathrm{NP}$
- Look at the hardest problems in NP
- Harder than any other problem in NP

Polynomial reduction

Polynomial reductions

- Two problems A and B
$-\mathrm{A} \leq \mathrm{P}$ B :
- A is polynomially reducible to B
- There is an algorithm for solving A in time that would be polynomial if we could solve arbitrary instances of B in unit time
- If both ways then they are polynomially equivalent: $\mathrm{A} \equiv_{\mathrm{p}} \mathrm{B}$
- Transitive: if $A \leq^{p} B$ and $B \leq^{p} C$ then $A \leq^{p} C$

Example

■ HAM \equiv^{p} HAMD

- HAMD $\leq \mathrm{p}$ HAM
- Trivial: if HAMalgo finds a cycle then yes
- HAM $\leq \mathrm{p}$ HAMD
- First check if HAMDalgo gives yes for the original graph
- Start considering edges for removal one by one
- Apply HAMDalgo to the remaining
- If still Hamiltonian without an edge then remove it
- Otherwise remove the edge and keep going
- Stop when a cycle is left, return it

Reduction function

- Two decision problems $\mathrm{X} \subseteq 1$ and $\mathrm{Y} \subseteq J$
\square F: map I \rightarrow J
such that $F(x) \in Y$ if and only if $x \in X$
Theorem: If F is computable in polynomial time then $X \leq p y$
- bool DecideX(x) \{ $y=F(x) ;$ if(DecideY(y)) return true; else return false;
\}

Example

HAMD $\leq \mathrm{p}$ TSPD

- Given a graph $G=(N, A)$, need to see if it is Hamiltonian
- Define $F(G)$ be the TSPD instance with a complete graph ($\mathrm{N}, \mathrm{N} \times \mathrm{N}$)
- Cost $=1$ if the edge in A and 2 otherwise
- TSPD bound being N
- If TSPD yes then that is a Hamiltonian cycle
- If TSPD no then no Hamiltonian cycle

NP-completeness

- Decision problem X is NP-complete

1. X is in $N P$
2. $Y \leq p X$ for every problem Y in $N P$

- X is polynomially harder than any other NP problem
- If we know that X is NP-complete and $X \leq^{p} Z$ then Z is NP-complete
- If we could only find one such X

SAT: satisfiability

- Given a boolean formula
- Is it satisfiable? is there an assignment of values to variables that will make it true?
- e.g. $(p \wedge q) \Rightarrow(p \vee q)$ is satisfiable via ($p=q=$ true)
- CNF: conjunctive normal form
- SAT-CNF satisfiability for boolean expressions in CNF form
- Cook's Theorem
- For any NP problem $\mathrm{Y}, \mathrm{Y} \leq \mathrm{p}$ SAT-CNF

NP-completeness

Now that we know one of NP-complete problems

- We find a bunch of other ones
- All we need to show is
- that a problem X is in NP
- and that SAT-CNF $\leq^{p} X$
- i.e. knowing that a polynomial algorithm for X would also mean that a polynomial algorithm exists for SAT-CNF
- Then X is NP-complete

Some NP-complete problems

SAT
3SAT: clauses have three variables

- 3DM: 3D matching
- HAMD: hamiltonian circuit
- PARTITION: set A and $s: A \rightarrow Z^{+}$
- Partition A into two equally sized parts

CLIQUE: clique of size J or more

- VERTEX COVER: of size K or less
- K-COL: graph colorability with K colors or less

SAT-3-CNF is NP-complete

- It is in NP

Will prove SAT-CNF \leq^{p} SAT-3-CNF

- Given an instance of SAT-CNF construct an instance of SAT-3-CNF efficiently
Consider one clause: disjunction of K literals $\mathrm{K}=3$: done
$K=4$: $C=(L 1+L 2+L 3+L 4)$ is satisfiable if and only if $C^{\prime}=(\mathrm{L} 1+\mathrm{L} 2+\mathrm{U})(\neg \mathrm{U}+\mathrm{L} 3+\mathrm{L} 4)$ is satisfiable if C is true then C^{\prime} is satisfiable,
if C is false then no choice of U will make C^{\prime} true.

SAT-3-CNF

- When $\mathrm{K}>4$: $\mathrm{C}=(\mathrm{L}[1]+\ldots+\mathrm{L}[\mathrm{K}])$

$$
\begin{aligned}
& \mathrm{C}^{\prime}= \\
& \begin{array}{c}
(\mathrm{L}[1]+\mathrm{L}[2]+\mathrm{U}[1])(-\mathrm{U}[1]+\mathrm{L}[3]+\mathrm{U}[2]) \ldots(\mathrm{U}[\mathrm{~K}- \\
3]+\mathrm{L}[\mathrm{~K}-1]+\mathrm{L}[\mathrm{~K}])
\end{array}
\end{aligned}
$$

Again C is true iff C^{\prime} is satisfiable

- Many clauses
- Each with its own U's
- For an instance of SAT-CNF built an instance of SAT-3-CNF

SAT-2-CNF

- Is in P
- Formula $(\neg X+Y)(\neg Z+\neg Y)(\neg Q+Z)(Q+\neg X)$
- Construct directed graph: two verts for each variable, edge from X to Y if there is a clause equiv to $(\neg X+Y)=-(\neg Y)+(\neg X)$

SAT-2-CNF

■ Claim

- If there are paths from some N to -N and from $\neg \mathrm{N}$ to N then the formula cannot be satisfied
- Otherwise it is satisfiable (example)

$$
\begin{aligned}
& \mathrm{X} \Rightarrow \mathrm{Y} \\
& \mathrm{Y} \Rightarrow \neg \mathrm{Z} \\
& \neg \mathrm{Z} \Rightarrow \neg \mathrm{Q} \\
& \neg \mathrm{Q} \Rightarrow \neg \mathrm{X}
\end{aligned}
$$ Hence

$\mathrm{X} \Rightarrow \neg \mathrm{X}$ Hmm...

HAM vs Eulerian

- Hamiltonian path
- directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and two vertices $\mathrm{s}, \mathrm{t} \in \mathrm{V}$
- decide if there exists a path from s to t, which goes through each node once.
- NP-complete (can construct graph for a SAT-3-CNF instance)
Eulerian path
- undirected graph $G=(V, E)$ and two vertices $s \neq t \in V$
- decide if there exists a path from s to t, which goes through each edge exactly once.

A theorem

Theorem: A connected graph has an Eulerian path from s to t iff

1. s and t's degrees are odd.
2. the degrees of the other vertices are even
So EULER is in P .
Can construct path by a polynomial algorithm?

NP-hard

$\square \mathrm{X}$ is NP-hard

- if there is an NP-complete problem Y that can be polynomially reduced to X
- $\mathrm{Y} \leq^{\mathrm{p}} \mathrm{X}$
- Does not have to be a decision problem
- Decision problem can be NP-hard but not in NP, for instance exact K-colorability
- Any K-coloring is a certificate for K-COL but not for K-COLE(exact: can color with K but no less)

What about two colors?

Determine whether a graph is 2-vertex colorable

- A polynomial algorithm?
- DFS/BFS?

Metric TSP

■ Undirected graph (complete)

- Distance matrix satisfies
- Triangle inequality

$$
d(x, z)<=d(x, y)+d(y, z)
$$

- length(Hamiltonian cycle) $>=$ length(Hamiltonian path) >= length(MST)
- Construct an MST, tour around it will cost no more than 2*length(MST)
- tour with shortcuts <= 2 length(MST)

