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Approximate 
algorithms

EECS 477
Lecture 23, 12/05/2002

SAT-2-CNF

Is in P
– Formula (¬X+Y)(¬Z+¬Y)(¬Q+Z)(Q+¬X)

• Construct directed graph: two verts for each 
variable, edge from X to Y if there is a clause 
equiv to (¬X+Y) = ¬(¬Y) + (¬X) 

X

¬X ¬Y ¬Z ¬Q

Y Z Q
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SAT-2-CNF

Claim
• If there are paths from some N to ¬N and from 

¬N to N then the formula cannot be satisfied
• Otherwise it is satisfiable (example)

P

X

¬X ¬Y ¬Z ¬Q

Y Z Q

X ⇒Y
Y ⇒ ¬Z
¬Z ⇒ ¬Q
¬Q ⇒ ¬X
Hence
X ⇒ ¬X
Hmm…

NP-completeness

Decision problem X is NP-complete
1. X is in NP
2. Y ≤p X  for every problem Y in NP
X is polynomially harder than any 
other NP problem
If we know that X is NP-complete and 
X ≤p Z then Z is NP-complete
If we could only find one such X
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Some NP-complete problems

SAT
3SAT: clauses have three variables
3DM: 3D matching
HAMD: hamiltonian circuit
PARTITION: set A and s:A→Z+

– Partition A into two equally sized parts
CLIQUE: clique of size J or more
VERTEX COVER: of size K or less
K-COL: graph colorability with K colors or less

NP-hard

X is NP-hard
– if there is an NP-complete problem Y that 

can be polynomially reduced to X
• Y ≤p X

– Does not have to be a decision problem
– Decision problem can be NP-hard but not 

in NP, for instance exact K-colorability
• Any K-coloring is a certificate for K-COL but not 

for K-COLE(exact: can color with K but no less)
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What about two colors?

Determine whether a graph is 
two-colorable

– A polynomial algorithm? 

Metric TSP

Undirected graph (complete)
Distance matrix satisfies
– Triangle inequality

d(x,z) <= d(x,y) + d(y,z)
• length(Hamiltonian cycle) >= 

length(Hamiltonian path) >= length(MST) 
– Construct an MST, tour around it will cost 

no more than 2*length(MST)
– tour with shortcuts <= 2 length(MST)
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Greedy 
– Optimal when objects are breakable
– If not breakable:

Knapsack

float greedy-knapsack(vector& w, vector& v, W){
sort decreasing v[j]/w[j]
weight = 0; value = 0;
for(j=0; j<w.size(); ++j) {

if(weight+w[j]<=W) { // add j-th object
value += v[j];  weight += w[j];

}
}
return value;

}

W

Knapsack

Bad example
– Ratio between optimal and greedy values
w[0]=1, v[0]=2, w[1]=X, v[1]=X
– Greedy value is 2
– Optimal value is X

• As X grows Optimal/Greedy goes to infinity

W=X
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Knapsack 

Fix it

Opt <= Opt’ = sum(v, j=0..L)
Greedy = sum(v, j=0..L-1)
Approx = max(biggest_value, Greedy)
Claim: Approx >= Opt/2

float approx-knapsack(vector& w, vector& v, W){
biggest_value = max(v);
return max(biggest, greedy-knapsack(w,v,W);

}

W
W’

L-th 
object

Max(a,b) >= (a+b)/2

Approximations

Maximization
Different guarantees
– Absolute

• Absolute error is less than C
Optimal – C <= Abs-Approx <= Optimal

– Relative
• Relative error less than ε

(1- ε)Optimal <= Rel-Approx <= Optimal
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MTSP

MTSP ≤p C-Abs-MTSP for any C>0
Make new instance M’
– multiplying the original distance matrix M 

by K=floor(C)+1
New approximate satisfies

K*Opt(M)<=Apprx(M’)<=Opt(M’)+C=K*Opt(M)+C
Opt(M)<=Apprx(M’)/K<=Opt(M)+C/K < Opt(M)+1
Everything is integer so Apprx(M’)/K = Opt(M)

EVALUATION FORMS!

Tuesday: final exam review


