SAT-2-CNF

- Is in P
 - Formula $(\neg X + Y)(\neg Z + \neg Y)(\neg Q + Z)(Q + \neg X)$
 - Construct directed graph: two verts for each variable, edge from X to Y if there is a clause equiv to $(\neg X + Y) = (\neg Y) + (\neg X)$
SAT-2-CNF

Claim
- If there are paths from some N to \(\neg N \) and from \(\neg N \) to N then the formula cannot be satisfied
- Otherwise it is satisfiable (example)

NP-completeness

- Decision problem X is NP-complete
 1. X is in NP
 2. \(Y \leq_p X \) for every problem Y in NP
- X is polynomially harder than any other NP problem
- If we know that X is NP-complete and \(X \leq_p Z \) then Z is NP-complete
- If we could only find one such X
Some NP-complete problems

- SAT
- 3SAT: clauses have three variables
- 3DM: 3D matching
- HAMD: hamiltonian circuit
- PARTITION: set A and $s:A \rightarrow \mathbb{Z}^+$
 - Partition A into two equally sized parts
- CLIQUE: clique of size J or more
- VERTEX COVER: of size K or less
- K-COL: graph colorability with K colors or less

NP-hard

- X is NP-hard
 - if there is an NP-complete problem Y that can be polynomially reduced to X
 - $Y \leq_p X$
 - Does not have to be a decision problem
 - Decision problem can be NP-hard but not in NP, for instance exact K-colorability
 - Any K-coloring is a certificate for K-COL but not for K-COLE (exact: can color with K but no less)
What about two colors?

- Determine whether a graph is two-colorable
 - A polynomial algorithm?

Metric TSP

- Undirected graph (complete)
- Distance matrix satisfies
 - Triangle inequality
 \[d(x,z) \leq d(x,y) + d(y,z) \]
 - length(Hamiltonian cycle) \(\geq \) length(Hamiltonian path) \(\geq \) length(MST)
 - Construct an MST, tour around it will cost no more than 2*length(MST)
 - Tour with shortcuts \(\leq \) 2 length(MST)
Knapsack

- **Greedy**
 - Optimal when objects are breakable
 - If not breakable:

  ```c
  float greedy-knapsack(vector& w, vector& v, W)
  {
    sort decreasing v[j]/w[j]
    weight = 0; value = 0;
    for(j=0; j<w.size(); ++j) {
      if(weight+w[j]<=W) { // add j-th object
        value += v[j]; weight += w[j];
      }
    }
    return value;
  }
  ```

- **Bad example**
 - Ratio between optimal and greedy values
 \(w[0]=1, \ v[0]=2, \ w[1]=X, \ v[1]=X \)
 - Greedy value is 2
 - Optimal value is \(X \)
 - As \(X \) grows Optimal/Greedy goes to infinity
Knapsack

- **Fix it**

  ```
  float approx-knapsack(vector& w, vector& v, W) {
    biggest_value = max(v);
    return max(biggest, greedy-knapsack(w, v, W);
  }
  ```

- **Opt** <= **Opt’** = \(\text{sum}(v, j=0..L)\)
- **Greedy** = \(\text{sum}(v, j=0..L-1)\)
- **Approx** = \(\max(\text{biggest_value}, \text{Greedy})\)
- **Claim**: \(\text{Approx} \geq \text{Opt}/2\)

\[
\text{Max}(a,b) \geq (a+b)/2
\]

Approximations

- **Maximization**
- **Different guarantees**
 - **Absolute**
 - Absolute error is less than \(C\)
 \[
 \text{Optimal} - C \leq \text{Abs-Approx} \leq \text{Optimal}
 \]
 - **Relative**
 - Relative error less than \(\varepsilon\)
 \[
 (1- \varepsilon)\text{Optimal} \leq \text{Rel-Approx} \leq \text{Optimal}
 \]
MTSP

- MTSP \leq_p C-Abs-MTSP for any $C > 0$
- Make new instance M'
 - multiplying the original distance matrix M by $K = \lfloor C \rfloor + 1$
- New approximate satisfies
 \[K \cdot \text{Opt}(M) \leq \text{Apprx}(M') \leq \text{Opt}(M') + C = K \cdot \text{Opt}(M) + C \]
 \[\text{Opt}(M) \leq \frac{\text{Apprx}(M')}{K} \leq \text{Opt}(M) + \frac{C}{K} < \text{Opt}(M) + 1 \]
 Everything is integer so $\frac{\text{Apprx}(M')}{K} = \text{Opt}(M)$

- EVALUATION FORMS!
- Tuesday: final exam review