Approximate algorithms

EECS 477
Lecture 23, 12/05/2002

SAT-2-CNF

- Is in P
- Formula ($-X+Y$)($-Z+-Y)(-Q+Z)(Q+-X)$
- Construct directed graph: two verts for each variable, edge from X to Y if there is a clause equiv to $(\neg X+Y)=\neg(\neg Y)+(\neg X)$

SAT-2-CNF

■ Claim

- If there are paths from some N to -N and from $\neg \mathrm{N}$ to N then the formula cannot be satisfied
- Otherwise it is satisfiable (example)

$X \Rightarrow Y$
$\mathrm{Y} \Rightarrow \neg \mathrm{Z}$
$\neg \mathrm{Z} \Rightarrow \neg \mathrm{Q}$
$\neg \mathrm{Q} \Rightarrow \neg \mathrm{X}$
Hence
$\mathrm{X} \Rightarrow \neg \mathrm{X}$ Hmm...

NP-completeness

- Decision problem X is NP-complete

1. X is in NP
2. $Y \leq^{p} X$ for every problem Y in NP

- X is polynomially harder than any other NP problem
- If we know that X is NP-complete and $\mathrm{X} \leq^{\mathrm{p}} \mathrm{Z}$ then Z is NP-complete
- If we could only find one such X

Some NP-complete problems

SAT

- 3SAT: clauses have three variables
- 3DM: 3D matching
- HAMD: hamiltonian circuit
- PARTITION: set A and $s: A \rightarrow Z^{+}$
- Partition A into two equally sized parts

CLIQUE: clique of size J or more

- VERTEX COVER: of size K or less
- K-COL: graph colorability with K colors or less

NP-hard

$\square \mathrm{X}$ is NP-hard

- if there is an NP-complete problem Y that can be polynomially reduced to X
- $\mathrm{Y} \leq^{\mathrm{p}} \mathrm{X}$
- Does not have to be a decision problem
- Decision problem can be NP-hard but not in NP, for instance exact K-colorability
- Any K-coloring is a certificate for K-COL but not for K-COLE(exact: can color with K but no less)

What about two colors?

Determine whether a graph is two-colorable

- A polynomial algorithm?

Metric TSP

- Undirected graph (complete)
- Distance matrix satisfies
- Triangle inequality

$$
d(x, z)<=d(x, y)+d(y, z)
$$

- length(Hamiltonian cycle) >= length(Hamiltonian path) >= length(MST)
- Construct an MST, tour around it will cost no more than 2*length(MST)
- tour with shortcuts <= 2 length(MST)

Knapsack

■ Greedy

- Optimal when objects are breakable
- If not breakable:
float greedy-knapsack (vector\& w, vector\& v, W) \{ sort decreasing $v[j] / w[j]$
weight $=0$; value $=0$;
for (j=0; j<w.size(); ++j) \{ if(weight+w[j]<=W) \{ // add j-th object value += v[j]; weight += w[j]; \}
\}
return value;
\}

Knapsack

- Bad example
- Ratio between optimal and greedy values
$w[0]=1, v[0]=2, w[1]=X, v[1]=X$
- Greedy value is 2
- Optimal value is X
- As X grows Optimal/Greedy goes to infinity

Knapsack

Fix it

float approx-knapsack (vector\& w, vector\& v, W) \{ biggest_value $=\max (v)$; return max (biggest, greedy-knapsack(w,v,W); \}

- Opt <= Opt' $=\operatorname{sum}(v, j=0 . . \mathrm{L})$
- Greedy = sum(v, j=0..L-1)
- Approx = max(biggest_value, Greedy)
- Claim: Approx >= Opt/2

$$
\operatorname{Max}(a, b)>=(a+b) / 2
$$

Approximations

Maximization
Different guarantees

- Absolute
- Absolute error is less than C

Optimal - C <= Abs-Approx <= Optimal

- Relative
- Relative error less than ε
(1- ε)Optimal <= Rel-Approx <= Optimal

MTSP

MTSP $\leq p$ C-Abs-MTSP for any C>0
■ Make new instance M'

- multiplying the original distance matrix M by $\mathrm{K}=$ floor(C) C 1
New approximate satisfies

$$
\mathrm{K}^{*} \operatorname{Opt}(\mathrm{M})<=\operatorname{Apprx}\left(\mathrm{M}^{\prime}\right)<=\operatorname{Opt}\left(\mathrm{M}^{\prime}\right)+\mathrm{C}=\mathrm{K}^{*} \operatorname{Opt}(\mathrm{M})+\mathrm{C}
$$

$$
\operatorname{Opt}(\mathrm{M})<=\operatorname{Apprx}\left(\mathrm{M}^{\prime}\right) / \mathrm{K}<=\operatorname{Opt}(\mathrm{M})+\mathrm{C} / \mathrm{K}<\operatorname{Opt}(\mathrm{M})+1
$$

Everything is integer so $\operatorname{Apprx}\left(\mathrm{M}^{\prime}\right) / \mathrm{K}=\operatorname{Opt}(\mathrm{M})$

■ EVALUATION FORMS!

■ Tuesday: final exam review

