EECS 481 Software Engineering

Design Document Template

System Description

1. System Purpose: Description of the problem or opportunity to be addressed, and why it is important. (Can be corrected cut&paste from Requirements Document)
2. Project Scope: What capabilities will be provided, divided into ‘base’ and ‘extended’ functionality? Discussion should be in the form:
· Brief textual description of scope (Can be corrected cut&paste from Requirements Document);

· Class diagram in proper UML notation (or dataflow diagram if non-OO implementation language). Note that a class diagram is typically not included in the requirements document (Can be corrected cut&paste from Requirements Document);

· Textual description of class diagram (or DFD) (Can be corrected cut&paste from Requirements Document);

· Hardware and software deployment: How will software be deployed onto hardware devices? That is, what specific devices will the software that you are developing be deployed onto? What devices are used for development?
Upon reading the System Description section, the reader should have a high level understanding of what the system does, how software is partitioned, and how software will be deployed onto hardware devices.

Class/Function Level Design: For OO Design only

Class: For each class, this section contains a detailed description.

· Name: class name;

· Description/Responsibilities: brief description/responsibilities for class;

· Behavioral Model: e.g., statechart diagram, if behavior is complex enough to justify;

· Attributes: each attribute for each class is enumerated with the following information:

· Name: attribute name using data naming standard
· Description: description of attribute
· Type: e.g., int, real, long-real, enumerated, …

· Units: e.g., deg F, meters, …

· Range: range of possible values, e.g., -50.3 to 187.4
· Resolution: resolution required for attribute, e.g., 0.01
· Operation: each operation for each class is enumerated with the following information:

· Name: operation name using data naming standard
· Description: description of operation
· Output: list of attributes consumed by operation
· Input: list of attributes produced by operation
· Behavioral Model: e.g., statechart diagram, if behavior is complex enough to justify;

Program Level Design: For Non-OO Design only

For each module in your design, describe what functionality it will provide and a low level, detailed description of how it will provide said functionality in terms of algorithms/data structures/control flow/etc. Student groups may extend this description mechanism as necessary.
Requirements Cross Reference

Devote some verbiage, or a spreadsheet table, to documenting this relationship. Among other things it will help you immensely in both verification and validation. A requirements cross-reference is a two-dimensional matrix which lists the major requirements in column one, and the major design modules in row one. A check mark in position <x, y> indicates that requirement x is provided for in module y. Note that a lot of check marks in any given column indicates low cohesion of that design module, and a lot of check marks in any given row indicates high coupling among the design modules -- both conditions suggesting that redesign would be useful.

Design Alternatives and Rationale

It is generally true that a first design for a project is bad! As the team considers alternatives they learn much about the various trade-offs involved. Documenting rejected designs, and the reasons for choosing the final design is invaluable to everyone: coders, management, maintenance, …. (Do not go overboard with this section, but some verbiage, and possibly diagrams, would be most useful and appreciated and give evidence of all the work you've done!).

References

Include any references that will be used during the development of your project. Put references in proper form.

© JHS 2/01 Project Documentation: SDS

