
EECS483 D1: Project 1 Overview

Chun-Hung Hsiao

Jan 11, 2013

1Special thanks to Ashutosh
Friday, January 11, 2013

Course Websites

• http://www.eecs.umich.edu/courses/eecs483/
–Schedule, lecture slides

• https://piazza.com/class#winter2013/
eecs483001w13
–Piazza forum for discussions and teammate lookup

• CTools
–Project & homework materials and grades
–NO homework/project submission on CTools!

2

Friday, January 11, 2013

http://www.eecs.umich.edu/courses/eecs483/
http://www.eecs.umich.edu/courses/eecs483/
https://piazza.com/class#winter2013/eecs483001w13
https://piazza.com/class#winter2013/eecs483001w13
https://piazza.com/class#winter2013/eecs483001w13
https://piazza.com/class#winter2013/eecs483001w13

Office Hours

• Prof. Satish Narayanasamy
–MoWe 3-4p @ 4721 BBB

• Chun-Hung Hsiao
–TuTh 3-5p @ NE CAEN cluster, 3F Duderstadt Center

• Supriya Rao
–Fr 3-5p @ NE CAEN cluster, 3F Duderstadt Center

3

Friday, January 11, 2013

Discussion Sessions

• We’ll add a new discussion session starting on next
week

• Supriya Rao
–TBD on Thursdays

• Chun-Hung Hsiao
–Fr 1:30-2:30p @ 1200 EECS

• The two sessions in the same week will cover the
same materials

• Feel free to choose any one of them!

4

Friday, January 11, 2013

Announcements

• IMPORTANT: Form a group and mail me by Jan 18
–Email: chhsiao _AT_ umich _DOT_ edu
–Add “[EECS483]” at the beginning of the subject

• Project 1 will be announced on Jan 14

• Sign up on Piazza if you haven’t done so

5

Friday, January 11, 2013

Introduction to Projects

• #projects in this course = 5
–Cover 5 parts of constructing a compiler

• Source language: Decaf
–A smaller subset of features from Java/C++

• Target language: MIPS
–Review it if you forget what you’ve learned in 370!

• Project submission procedure will be explained in
the next discussion session

6

Friday, January 11, 2013

Important Notes

• Honor Code
– You can interact with other students for discussing course materials, provide

each other with limited debugging assistance, and help each other learn
development tools. Though you can discuss homeworks with others, you have
to write it up individually. Do not refer to others source code for the
projects. We use sophisticated automated program to correlate projects of
different groups and check for plagiarism.
The Engineering Honor Code obligates you not only to abide by this policy, but
also to report any violations that you become aware of. Violations of this policy
will be brought to the College of Engineering's Honor Council. For more
information on the Honor Code, see Honor Council web page. If you have any
doubts about whether a certain level of collaboration is permissible, or any other
questions, contact the professor.

• Copyright Infringement
– Understand the scope of copyright law. Don't take anything from the Internet,

or anywhere else, because it is almost always copyrighted, by default. Don't
confuse copyrights, trademarks, and other forms of "intellectual property." Learn
about the public domain laws for your jurisdiction.

7

Friday, January 11, 2013

Stages of the Projects

• Stages of compilation
–Lexical analysis: scanner (Project 1)
–Syntax analysis: parser
–Semantic analysis
–Code generation
–Code optimization

• By the end of this term...
–You would own a compiler!

8

Friday, January 11, 2013

About Programming Languages...

• Which languages have you used?

• Any idea about compiling programs written in these
languages?

• What do you do when you want to read a program
written in a language you are not familiar with?

9

Friday, January 11, 2013

Elements of a Language

• Alphabet
–Characters on a standard keyboard (in most cases)

• Tokens
–Keywords, identifiers (names of variables, functions, and

classes, etc.), operators, literals

• Grammar
–Expressions and statements

• Semantic
–What is the meaning of a keyword?
–What does an identifier refers to?

10

Friday, January 11, 2013

Decaf Language Features (1/3)

• Strongly typed, object oriented

• Similar to Java/C++, with a smaller feature set

• Case sensitive, both types of comments are allowed

• Library functions are available for I/O

• Detailed overview available on the course website
–http://www.eecs.umich.edu/courses/eecs483/

decafOverview.pdf

11

Friday, January 11, 2013

http://www.eecs.umich.edu/courses/eecs483/decafOverview.pdf
http://www.eecs.umich.edu/courses/eecs483/decafOverview.pdf
http://www.eecs.umich.edu/courses/eecs483/decafOverview.pdf
http://www.eecs.umich.edu/courses/eecs483/decafOverview.pdf

Decaf Language Features (2/3)

• Scoping
–Global scope
–Function scope
–Pair of braces defines a nested scope
–Java-like scoping rules are followed

• Data types
–Bulit-in base types: int, double, boolean, string
–Special base type for functions: void
–Array type
–Named type for objects

12

Friday, January 11, 2013

Decaf Language Features (3/3)

• Supports classes
–All variables are private
–Classes are declared globally
–“this” is optional when accessing a member variable

• Single inheritance with multiple interfaces
–All methods are “virtual”

• Control structure, operator precedence

13

Friday, January 11, 2013

Decaf Grammar

• A glimpse on Decaf grammar
StmtBlock ::= { VariableDecl* Stmt* }
Stmt ::= Expr ; | IfStmt | WhileStmt | ForStmt |
 BreakStmt | ReturnStmt | PrintStmt |
 StmtBlock
IfStmt ::= if (Expr) Stmt else Stmt

• Consists of tokens (in Courier font) and syntactic
variables (in italic)

• Comprehensive reference on the course website
–http://www.eecs.umich.edu/courses/eecs483/

decafOverview.pdf
14

Friday, January 11, 2013

http://www.eecs.umich.edu/courses/eecs483/decafOverview.pdf
http://www.eecs.umich.edu/courses/eecs483/decafOverview.pdf
http://www.eecs.umich.edu/courses/eecs483/decafOverview.pdf
http://www.eecs.umich.edu/courses/eecs483/decafOverview.pdf

What’s Project 1 All About?

• Use lex to create a lexical analyzer for Decaf

• Tow parts: preprocessor + scanner
–The preprocessor takes out comments and handles

#define macros

• You just need to implement the scanner
–Implementing the preprocessor is optional

• Recognize tokens in the order they appear

• Set attributes for every recognized token
–The information will be used in future projects

15

Friday, January 11, 2013

Lexical Analysis (1/2)

• In English:
Alice! ate! apples! .
‹Noun, “Alice”› ‹Verb, “ate”› ‹Noun, “apples”› ‹Period›

• In C++/Java/Decaf:
i! =! j! +! 1! ;
‹Identifier, “i”› ‹AssignOp› ‹Identifier, “j”› ‹AddOp› ‹Literal, int 1› ‹Semicolon›

• Why is lexical analysis on English more difficult?

16

Friday, January 11, 2013

Lexical Analysis (2/2)

• In a programming language, each symbol is
associated with a pattern
–Token: pair of symbol and attribute
–Lexeme: sequence of characters matching the pattern

• In lex, the pattern of a symbol is specified with a
regular expression
–Syntax similar to POSIX Extended Regular Expression
–Similar but not exactly the same as the mathematical

notations in your writing homework!

17

Friday, January 11, 2013

http://en.wikipedia.org/wiki/Regular_expression%23POSIX_Extended_Regular_Expressions
http://en.wikipedia.org/wiki/Regular_expression%23POSIX_Extended_Regular_Expressions

Regular Expression in Lex

• a – match “a” in the string
• [a-z] – match any lowercase letter from a to z
• [0-9a-zA-Z] – match any alphanumerical letters
• [^a-z] – match any character but not a to z
• . – match any character
• a* – match 0 or more times of “a”
• a+ – match at least once of “a”
• a? – match at most once of “a”
• a{n} – match exactly n times of “a”
• a|b – match either “a” or “b”
• ab – match “ab”
• \ – escape character
• () – change precedence

18

Friday, January 11, 2013

Regex Examples

• Date
–[0-1][0-9]\.[0-3][0-9]\.[0-9]{4}

• May, Mary and Harry.
–[MH]ar*y
–(Mar?|Harr)y if you want to match nothing more

• Email id with only small alphabets @ “domain name”
“.com”

• Regular expression for a URL?

19

Friday, January 11, 2013

Lex

• Tool for generating scanners

• Specify the rules of scanning and corresponding
action for every rule

• It automatically generates a scanner that would do
the trick!

• The scanner is basically a DFA program written in C

• flex: a lex-compatible variant accessible on each
CAEN linux machine

20

Friday, January 11, 2013

Lex Syntax

• Structure of a .l file:

DEFINITIONS
%%
RULES
%%
USERCODE

21

Friday, January 11, 2013

Lex Definitions

• Define names for regular expressions used in the
RULE section for convenience

• Examples:
DIGIT! [0-9]
CommentStart! "/*"
IDENTIFIER! [a-zA-Z][a-zA-Z0-9]*

• Necessary user code can be placed here
%{
#include <stdio.h>
%}

22

Friday, January 11, 2013

Lex Rules

• Each line consists of a rule in the following form:

PATTERN ACTION

• Pattern: a combination of defined names and regex

• Action: a piece of C code describing what to do

• Example
{DIGIT}+|0x[0-9A-Fa-f]+! val=strtol(yytext,NULL,0);

23

Friday, January 11, 2013

Lex Example: Line Count
%{
#include <stdio.h>
int num_lines = 0, num_chars = 0;
%}

%%

\n ++num_lines; ++num_chars;
. ++num_chars;

%%

int main() {
 yylex();
 printf("# of lines = %d, # of chars = %d\n",
 num_lines, num_chars);
 return 0;
}

24

Friday, January 11, 2013

References

• http://flex.sourceforge.net/manual/

• http://dinosaur.compilertools.net/#lex

• http://dinosaur.compilertools.net/#flex

• http://epaperpress.com/lexandyacc

• http://www.cs.rug.nl/~jjan/vb/lextut.pdf

25

Friday, January 11, 2013

http://flex.sourceforge.net/manual/
http://flex.sourceforge.net/manual/
http://dinosaur.compilertools.net/#lex
http://dinosaur.compilertools.net/#lex
http://dinosaur.compilertools.net/#flex
http://dinosaur.compilertools.net/#flex
http://epaperpress.com/lexandyacc
http://epaperpress.com/lexandyacc
http://www.cs.rug.nl/~jjan/vb/lextut.pdf
http://www.cs.rug.nl/~jjan/vb/lextut.pdf

Thank you & all the best :)

26

Friday, January 11, 2013

