
EECS483 D12: Project 5 Overview

Chun-Hung Hsiao

April 5, 2013

1

Wednesday, April 10, 2013

Announcement

• Project 5 released on CTools
–Due on 4/22/2013

• We will manually check your LAST submission
–Provide a README file to

• Briefly outlining your implementation
• Explain your basic design decisions
• Summarize experimental results noting which files benefited from

your pass
–Write sufficient comments in your code to help us read

your code

2

Wednesday, April 10, 2013

Project 5 Overview

3

AST MIPSTAC
Optimize!Done

Wednesday, April 10, 2013

Project 5: Register Allocation (1/3)

• The original register allocation is awful!
–If the following code is given

• a = 1;
• b = 2;
• c = a + b;

–The default TAC-to-MIPS conversion is
• $t2 = 1;

*(addr of Location a) = $t2;
• $t2 = 2;

*(addr of Location b) = $t2;
• $t0 = *(addr of Location a)

$t1 = *(addr of Location b)
$t2 = $t0 + $t1
*(addr of Location c) = $t2

–Only 3 registers are used!
4

Wednesday, April 10, 2013

Project 5: Register Allocation (2/3)

• We can have better register usage
–If the following code is given

• a = 1;
• b = 2;
• c = a + b;

–Map each Location to a register
• Location a: $s0
• Location b: $s3
• Location c: $t4

–Then generate efficient code
• $s0 = 1;
• $s3 = 2;
• $t4 = $s0 + $s3

5

Wednesday, April 10, 2013

Project 5: Register Allocation (3/3)

• Compute interfering locations and build the
interference graph
–Liveness analysis at IR/TAC level

• Allocate registers for each location via graph-
coloring
–Map locations to MIPS registers

• Generate MIPS instructions based on the allocation
–If a location is mapped to a register, use it directly
–If a location is not mapped, use a free register to load

the value before use or store the value after def
• What if all registers are used?

6

Wednesday, April 10, 2013

Step 1: Identifying Basic Blocks

• The following TAC starts a basic block:
–BeginFunc
–Label
–Any instruction after a Goto, IfZ or Return

• In fact any instruction after a Return is dead

• The following TAC ends a basic block:
–Goto
–IfZ
–Return
–EndFunc
–Any instruction before a Label

7

Wednesday, April 10, 2013

Practice: Allocating Temporary Variables

• All temporary variables are only assigned once
–This is called Static Single Assignment (SSA) form

• If no optimization applied, they are only used in the
same basic block

• The simplest register allocation is just doing a local
liveness analysis and allocate register for temporary
variables!
–You can start your PP5 with this simple allocation as a

practice
–You are still required to implement the whole global

register allocation though

8

Wednesday, April 10, 2013

Step 2: Construct Intra-procedural CFG

• The “global” analysis described in class is just a
intra-procedural analysis
–Analysis within a single function
–CFG of a function is static and can be analyzed easily
–Inter-procedural control flow is dynamic due to function

calls and thus much harder to analyze

• One pass to find the label-to-basic-block mapping

• Another pass to construct the CFG of each function
–Examine each Goto and IfZ to find the predecessors and

successors of each basic block
–Introduce a pseudo exit node for each function

9

Wednesday, April 10, 2013

Step 3: Liveness Analysis

• For each instruction, find live variables before
executing it

• Consider the following piece of code annotated with
live variables
–{a, b, e} c = a + b;
–{c, e} d = c * e;
–{d} return d;

• Locations a, b and e lives before the first instruction
so we need to allocate them into different registers
–So do c and e
–c can reuse registers that have been used by a or b

10

Wednesday, April 10, 2013

Another Approach: Live Range Analysis

• Instead of keeping track of live variables, we keep
track which definition is alive at each instruction

• Variables that use the name names but have
different definitions are treated as distinct variables

• Useful if you want to reschedule the instructions
11

!"#$%&# #"'()*+#,--.#&-#

/#")0'12#3450'12#

#
!

!"# #$#
!$# #%#
!&# #!"#'#!$#
!%# #!"#'#"#
!(# #!"#)#!$#
!*# #!%#)#$#

6)72#85*+2########9*:2(;2(2*<2#

!"# !$#

!%# !&#

!'#

!(#

6)72! !"#$%#&'(!)%''!&(!*+(,!#-#%.!/&(01$(!%2!%+!1"($)$%22(.3!

=25>!!

!4#$%#&'(!)%''!.("($!&(!*+(,!#-#%.!

!4#'*(!)%''!&(!1"($)$%22(.!&(01$(!.(52!*+(!

s1 s2 s3 s4 s5 s6

Wednesday, April 10, 2013

Step 4: Register Allocation

• Use all available registers and apply the graph-
coloring algorithm

• Choose locations to spill if there are not enough
registers
–Locations with lower spill cost are better
–Locations that interfere with more locations are better
–Heuristic: pick the one that has the smallest value of

(spill cost / #neighbors)
–More complex strategies exist

• When spilling, you need more registers!
–Keep some special registers for spilling
–Or do iterative spilling 12

Wednesday, April 10, 2013

MIPS Registers

• MIPS architecture contains the following registers
–$0: zero, read-only -- cannot use
–$at: assembler temporary -- reserved
–$v0 - $v1: function result registers

• $v0: returned value -- save it before function calls
–$a0 - $a3: function argument registers

• $a0 - $a2: used in built-ins -- save them before calling
–$t0 - $t9: temporary registers
–$s0 - $s8: saved registers
–$k0 - $k1: kernel registers -- reserved
–$gp: global pointer -- reserved
–$fp: frame pointer -- reserved
–$sp: stack pointer -- reserved 13

Wednesday, April 10, 2013

Step 5: Use Allocated Registers

• Modify the MIPS emitting functions to emit assembly
code based on our allocation

• For spilled locations
–If it is a source, remember to load the value to a free

register
–If it is a target, remember to store the value from the

result register
–MIPS is 3-address, so we need at most 2 free registers if

both source operands are spilled

14

Wednesday, April 10, 2013

Finished?

• Not really....

• Need to deal with function calls!

15

Wednesday, April 10, 2013

Function Entry

• For each allocated parameter, load them into their
registers

• In the liveness analysis, the function entry should
“kill” all parameter locations

• Remember to load spilled global registers as well

16

Wednesday, April 10, 2013

Function Call

• In the CFG, we do not keep track of the control flow
of function call!

• Values of the registers in the caller may be
destroyed by the callee!
–Need to preserve the values

• Two strategies (calling convention)
–Caller-saved registers - temporary registers
–Callee-saved registers - saved registers
–Different strategies incur different spill cost!

• You can choose whatever strategy you want

17

Wednesday, April 10, 2013

Example of Caller-/Callee-saved Registers
_f:
 BeginFunc 4
 _tmp1 = *($fp + 4);
 _tmp1 = _tmp1 * _tmp1;
 Return _tmp1;
 EndFunc
_g:
 BeginFunc;
 _tmp2 = 1;
 _tmp3 = 2;
 _tmp4 = 3;
 _tmp5 = 4;
 _tmp6 = 5;
 PushParam _tmp6;
 _tmp7 = LCall _f;

 _tmp7 = _tmp7 * _tmp6;
 _tmp7 = _tmp7 * _tmp5;
 _tmp7 = _tmp7 * _tmp4;
 _tmp7 = _tmp7 * _tmp3;
 _tmp7 = _tmp7 * _tmp2;
 Return _tmp7;
 EndFunc;
main:
 BeginFunc;
 _tmp8 = 6;
 _tmp9 = LCall _g;
 _tmp9 = _tmp8 * _tmp9;
 PushParam _tmp9;
 LCall _PrintInt;
 EndFunc;

18

• Should we use caller- or callee-saved registers for _tmp1?
• Should we use caller- or callee-saved registers for _tmp2 -

_tmp6?
• Should we use caller- or callee-saved registers for _tmp8?

Wednesday, April 10, 2013

More Optimizations (Optional)

• You can choose to implement more optimizations
–Dead code elimination
–Constant folding
–Common subexpression elimination
–Constant propagation
–Forward copy propagation

• Apply these optimizations before register allocation

• Design your analysis framework so you can use the
same code skeleton to do all kinds of analysis
–Just need to provide the transfer function and meet

operator!
19

Wednesday, April 10, 2013

Thank you &
Good luck to your last project!

20

Wednesday, April 10, 2013

