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Announcement

• Project 5 released on CTools
–Due on 4/22/2013

• We will manually check your LAST submission
–Provide a README file to

• Briefly outlining your implementation
• Explain your basic design decisions
• Summarize experimental results noting which files benefited from 

your pass
–Write sufficient comments in your code to help us read 

your code
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Project 5 Overview
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Project 5: Register Allocation (1/3)

• The original register allocation is awful!
–If the following code is given

• a = 1;
• b = 2;
• c = a + b;

–The default TAC-to-MIPS conversion is
• $t2 = 1;

*(addr of Location a) = $t2;
• $t2 = 2;

*(addr of Location b) = $t2;
• $t0 = *(addr of Location a) 

$t1 = *(addr of Location b)
$t2 = $t0 + $t1
*(addr of Location c) = $t2

–Only 3 registers are used!
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Project 5: Register Allocation (2/3)

• We can have better register usage
–If the following code is given

• a = 1;
• b = 2;
• c = a + b;

–Map each Location to a register
• Location a: $s0
• Location b: $s3
• Location c: $t4

–Then generate efficient code
• $s0 = 1;
• $s3 = 2;
• $t4 = $s0 + $s3
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Project 5: Register Allocation (3/3)

• Compute interfering locations and build the 
interference graph
–Liveness analysis at IR/TAC level

• Allocate registers for each location via graph-
coloring
–Map locations to MIPS registers

• Generate MIPS instructions based on the allocation
–If a location is mapped to a register, use it directly
–If a location is not mapped, use a free register to load 

the value before use or store the value after def
• What if all registers are used?
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Step 1: Identifying Basic Blocks

• The following TAC starts a basic block:
–BeginFunc
–Label
–Any instruction after a Goto, IfZ or Return

• In fact any instruction after a Return is dead

• The following TAC ends a basic block:
–Goto
–IfZ
–Return
–EndFunc
–Any instruction before a Label
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Practice: Allocating Temporary Variables

• All temporary variables are only assigned once
–This is called Static Single Assignment (SSA) form

• If no optimization applied, they are only used in the 
same basic block

• The simplest register allocation is just doing a local 
liveness analysis and allocate register for temporary 
variables!
–You can start your PP5 with this simple allocation as a 

practice
–You are still required to implement the whole global 

register allocation though

8

Wednesday, April 10, 2013



Step 2: Construct Intra-procedural CFG

• The “global” analysis described in class is just a 
intra-procedural analysis
–Analysis within a single function
–CFG of a function is static and can be analyzed easily
–Inter-procedural control flow is dynamic due to function 

calls and thus much harder to analyze

• One pass to find the label-to-basic-block mapping

• Another pass to construct the CFG of each function
–Examine each Goto and IfZ to find the predecessors and 

successors of each basic block
–Introduce a pseudo exit node for each function
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Step 3: Liveness Analysis

• For each instruction, find live variables before 
executing it

• Consider the following piece of code annotated with 
live variables
–{a, b, e} c = a + b;
–{c, e} d = c * e;
–{d} return d;

• Locations a, b and e lives before the first instruction 
so we need to allocate them into different registers
–So do c and e
–c can reuse registers that have been used by a or b
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Another Approach: Live Range Analysis

• Instead of keeping track of live variables, we keep 
track which definition is alive at each instruction

• Variables that use the name names but have 
different definitions are treated as distinct variables

• Useful if you want to reschedule the instructions
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Step 4: Register Allocation

• Use all available registers and apply the graph-
coloring algorithm

• Choose locations to spill if there are not enough 
registers
–Locations with lower spill cost are better
–Locations that interfere with more locations are better
–Heuristic: pick the one that has the smallest value of 

(spill cost / #neighbors)
–More complex strategies exist

• When spilling, you need more registers!
–Keep some special registers for spilling
–Or do iterative spilling 12
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MIPS Registers

• MIPS architecture contains the following registers
–$0: zero, read-only -- cannot use
–$at: assembler temporary -- reserved
–$v0 - $v1: function result registers

• $v0: returned value -- save it before function calls
–$a0 - $a3: function argument registers

• $a0 - $a2: used in built-ins -- save them before calling
–$t0 - $t9: temporary registers
–$s0 - $s8: saved registers
–$k0 - $k1: kernel registers -- reserved
–$gp: global pointer -- reserved
–$fp: frame pointer -- reserved
–$sp: stack pointer -- reserved 13
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Step 5: Use Allocated Registers

• Modify the MIPS emitting functions to emit assembly 
code based on our allocation

• For spilled locations
–If it is a source, remember to load the value to a free 

register
–If it is a target, remember to store the value from the 

result register
–MIPS is 3-address, so we need at most 2 free registers if 

both source operands are spilled
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Finished?

• Not really....

• Need to deal with function calls!
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Function Entry

• For each allocated parameter, load them into their 
registers

• In the liveness analysis, the function entry should 
“kill” all parameter locations

• Remember to load spilled global registers as well
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Function Call

• In the CFG, we do not keep track of the control flow 
of function call!

• Values of the registers in the caller may be 
destroyed by the callee!
–Need to preserve the values

• Two strategies (calling convention)
–Caller-saved registers - temporary registers
–Callee-saved registers - saved registers
–Different strategies incur different spill cost!

• You can choose whatever strategy you want
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Example of Caller-/Callee-saved Registers
_f:
    BeginFunc 4
    _tmp1 = *($fp + 4);
    _tmp1 = _tmp1 * _tmp1;
    Return _tmp1;
    EndFunc
_g:
    BeginFunc;
    _tmp2 = 1;
    _tmp3 = 2;
    _tmp4 = 3;
    _tmp5 = 4;
    _tmp6 = 5;
    PushParam _tmp6;
    _tmp7 = LCall _f;

    _tmp7 = _tmp7 * _tmp6;
    _tmp7 = _tmp7 * _tmp5;
    _tmp7 = _tmp7 * _tmp4;
    _tmp7 = _tmp7 * _tmp3;
    _tmp7 = _tmp7 * _tmp2;
    Return _tmp7;
    EndFunc;
main:
    BeginFunc;
    _tmp8 = 6;
    _tmp9 = LCall _g;
    _tmp9 = _tmp8 * _tmp9;
    PushParam _tmp9;
    LCall _PrintInt;
    EndFunc;
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• Should we use caller- or callee-saved registers for _tmp1?
• Should we use caller- or callee-saved registers for _tmp2 - 

_tmp6?
• Should we use caller- or callee-saved registers for _tmp8?
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More Optimizations (Optional)

• You can choose to implement more optimizations
–Dead code elimination
–Constant folding
–Common subexpression elimination
–Constant propagation
–Forward copy propagation

• Apply these optimizations before register allocation

• Design your analysis framework so you can use the 
same code skeleton to do all kinds of analysis
–Just need to provide the transfer function and meet 

operator!
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Thank you &
Good luck to your last project!
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