
EECS483 D2: Project 1 Details

Chun-Hung Hsiao

Jan 18, 2013

1

Friday, January 18, 2013

Announcements

• We won’t open the additional discussion session.

• Online submission system will be open at 12:00am,
Jan 19.

• Email me your group information before the end of
the day if you have not done so!
–If you mailed me, you should have got a short reply from

me.

2

Friday, January 18, 2013

Project 1: Deadline & Policy

• Due on 11:59pm, Jan 25.
–You will still be able to submit your source code after the

deadline, but we will check ALL submission times and
reduce your late days accordingly.

• The submission of highest points (before applying
the late penalty) will be used for grading.

• You will be able to get feedback of the first 3
submissions of each day.

• DO NOT try to exploit the submission system. There
will be severe punishment if we detect malicious
behavior in your source code.

3

Friday, January 18, 2013

Project 1: Submission

• Login on a CAEN Linux machine and place your
source code in a separated folder.

• Use the following command to submit your code
 $ ~chhsiao/Public/submit.sh <project#> <folder>

• The feedback will be emailed to you in a few
minutes
–If you do not get it in hours, please email me or reflect on

the forum. I will resolve the problem once I saw the
message.

4

Friday, January 18, 2013

Lex Example: Simple In-Order Calculator
%{ enum { INT = 1, ADD, SUB, MUL, DIV, ENTER, ERROR }; %}
%%
[\t]
\+ return ADD;
- return SUB;
* return MUL;
\/ return DIV;
[0-9]+ return INT;
\n return ENTER;
. return ERROR;
%%
int compute(int a, int op, int b) {
 switch(op) {
 case ADD: return a + b;
 case SUB: return a - b;
 case MUL: return a * b;
 case DIV: return a / b;
 }
 return b;
}
int main() {
 int val = 0, op = 0, token;
 while(token = yylex()) {
 switch(token) {
 case INT: val = compute(val, op, atoi(yytext)); break;
 case ENTER: printf("%d\n", val); val = 0; op = 0; break;
 case ERROR: puts("error!"); return 1;
 default: op = token;
 }
 }
 return 0;
} 5

Friday, January 18, 2013

Lex Flow

6

RULES

Client
yylex()

ACTION

return

Friday, January 18, 2013

Lex Built-ins

• char* yytext - C string of the matched lexeme

• int yyleng - the length of the match lexeme

• yylval, yylloc - bridge to the parser
–Not a necessary part of lex

• ECHO; - output the lexeme

• More in the manual
–http://flex.sourceforge.net/manual/Index-of-Functions-

and-Macros.html#Index-of-Functions-and-Macros
–http://flex.sourceforge.net/manual/Index-of-

Variables.html#Index-of-Variables
7

Friday, January 18, 2013

http://flex.sourceforge.net/manual/Index-of-Functions-and-Macros.html#Index-of-Functions-and-Macros
http://flex.sourceforge.net/manual/Index-of-Functions-and-Macros.html#Index-of-Functions-and-Macros
http://flex.sourceforge.net/manual/Index-of-Functions-and-Macros.html#Index-of-Functions-and-Macros
http://flex.sourceforge.net/manual/Index-of-Functions-and-Macros.html#Index-of-Functions-and-Macros
http://flex.sourceforge.net/manual/Index-of-Variables.html#Index-of-Variables
http://flex.sourceforge.net/manual/Index-of-Variables.html#Index-of-Variables
http://flex.sourceforge.net/manual/Index-of-Variables.html#Index-of-Variables
http://flex.sourceforge.net/manual/Index-of-Variables.html#Index-of-Variables

Lex Rule Matching

• Longest possible match
–“supercalifragilisticexpialidocious” is

considered one token matched by “[a-z]*” rather than
two tokens matched by “[a-z]{17}”

• Matches the earlier rule if tie

• Print a one-character token if none matched
–See dpp.l for the simplest lex file!

8

Friday, January 18, 2013

Lex Conditions

• You can use conditions to specify when a rule
should be turned on
–“<COND>[a-z]+” is active only if COND is on
–“<C1,C2>[0-9]+” is active when either C1 or C2 is on
–“<*>[HM]ar*y” is always active

• Declare condition variables in the Definition section
–%x COND - only rules with COND are active
–%s COND - rules with no conditions are also active

• BEGIN(COND); to trigger the condition
–Only one condition is on at a time

• Initial condition: INITIAL 9

Friday, January 18, 2013

Compiling and Running Lex Program

• First compile to C:
 lex myscanner.l
–Outputs lex.yy.c
–Specify output filename with -o option

• Then compile to executable:
 gcc lex.yy.c -ll -o myscanner
–Can also use g++, as in Project 1

• Scan file through I/O redirection:
 ./myscanner < file

10

Friday, January 18, 2013

Project 1: What to Do

• Main quest: complete scanner.l to write a scanner
for Decaf
–Recognizes keywords, operators, identifiers, strings and

numeric literals
–Reports the line and column numbers of each token
–Reports errors for invalid tokens

• Optional: preprocessor for Decaf
–Strip comments
–Implement simple macro substitution
–You may choose to use either C or Lex to implement it

11

Friday, January 18, 2013

Decaf Scanner

• Recognizing each valid token
–Record the location of the lexeme in yylloc
–Set the value attribute of yylval if it is a literal
–Set the name attribute of yylval if it is an identifier

• Reporting valid tokens
–Just return the type of the tokens to main()

• Reporting invalid tokens
–Generate error messages through the library function in

class ReportError
–Some tokens are skipped, some are fixed

12

Friday, January 18, 2013

Decaf Preprocessor

• Handle comments across multiple lines
–Need to preserve line numbers for scanner
–Column numbers are not preserved after preprocessing

• Macro substitution
–“#define ABC 10” substitutes “#ABC” with “10”
–“#define ABC 10” substitutes “#ABC” with “ 10”
–Skip bad #define to end of line
–Look up the latest definition before substitution
–Skip invalid # tokens (# followed by a series of letters)

13

Friday, January 18, 2013

Handling # Directives

• Need a symbol table to remember each macro
definition

• Update the table when seeing a redefinition

• Check the table to see if a macro has been defined
when seeing it

• If defined, retrieve the replacement and output it!

14

Friday, January 18, 2013

Project 1 Hints

• Go through main() to know how the program
executes

• Arrange the order of the rules carefully

• Think about when to increase the line and column
numbers
–You can use DoBeforeEachAction() to simplify the

update

• Some errors need individual rules to detect!
–Consider the rules for each possible valid and invalid

token

15

Friday, January 18, 2013

Exercise 1

16

Class Problem

0 1

4

2

6

3

5

9 7 ! !

!

!

!
!

!

!
a

a

b

8 b

Convert this NFA to a DFA

Friday, January 18, 2013

Exercise 2

• How to construct a DFA that accepts anything but
strings containing 110?

17

000

100

001

101

010

110

011

111

Friday, January 18, 2013

Exercise 3

• How to write down an RE that recognizes all strings
with even numbers of a’s and b’s?
–It’s hard to come up with an RE that pairs all a’s and b’s!
–How about split them into 2-letter pieces?

18

Friday, January 18, 2013

Thanks & Have good holidays!

19

Friday, January 18, 2013

