
EECS483 D3: Project 2 Overview

Chun-Hung Hsiao

Jan 25, 2013

1

Friday, January 25, 2013

Announcements

• Project 1 is due at 11:59pm today
–Submit your code earlier
–No Michigan time!

• Homework 1 is due on next Monday
–Hand in your answer sheet with the cover page in class

• Project 2 has will be released on CTools today
–Due on Monday, Feb 11
–Submission open on tomorrow

2

Friday, January 25, 2013

Project 1 FAQ (1/2)

• How to count the width of a TAB character?
–You can do whatever you like (as long as you count it as

a small positive number). The grader will use a special
program to judge your TAB column calculation

• I redirected my output to a file, but the error
messages still go to the screen
–You need to redirect the standard output stream and the

standard error stream at the same time:
 ./dcc < input_file >& output_file

3

Friday, January 25, 2013

Project 1 FAQ (2/2)

• I got a feedback saying “can’t build submission,”
why?
–The folder you passed to the submission script should

be the folder that contains the Makefile and other stuff
–I’ve updated the script so it will run a building test before

submitting

• The submission script told me that I have an
unsuccessful submission, but I still got the feedback
–The file system on CAEN sometimes disconnects

temporarily and thus makes your submissions be
partially uploaded

–I’ve updated the script to reduce the chance but contact
me if you encounter any problem

4

Friday, January 25, 2013

Exercise: DFA Minimization (1/4)

• Remove dead and unreachable states first

• Initial partition: {Q-F, F}

5

FQ-F

1

2

3

54
a

ab

b

b

b

a

a

Friday, January 25, 2013

Exercise: DFA Minimization (2/4)

• Iteratively refine each group in the partition by
finding distinguishable transitions

6

F

1

2

3

54
a

ab

b

b

b

a

a

Q-F

Friday, January 25, 2013

Exercise: DFA Minimization (3/4)

• Continuously examine a newly generated group to
see if it needs to be further split

7

FG1

G2

1

2

3

54
a

ab

b

b

b

a

a

Friday, January 25, 2013

Exercise: DFA Minimization (4/4)

8

Group being
examined

Transition table of each state in the
group New partition

- - {1,2,3,4}, {5}

{1,2,3,4}

1: a → {1,2,3,4}, b → {1,2,3,4}
2: a → {1,2,3,4}, b → {1,2,3,4}
3: a → {5}, b → {1,2,3,4}
4: a → {5}, b → {1,2,3,4}

{1,2}, {3,4}, {5}

{5} 5: a → {}, b → {} {1,2}, {3,4}, {5}

1

2

3

54
a

ab

b

b

b

a

a

Friday, January 25, 2013

Project 2: Overview

• Now you have a scanner, the next step is to do the
syntax analysis based on Decaf’s grammar

• You will learn to use the Yacc/Bison parser generator
to build a parser for Decaf
–Just like using lex/flex to generate a scanner

• Build and print the abstract syntax tree if the input
program is good; report syntax errors otherwise
–The abstract syntax tree will then be used in the

semantic analysis phase in later projects

9

Friday, January 25, 2013

Syntax Analysis

• Given the token sequence, now we want to
recognize expressions and statements

• Let’s start with an English example:
 Alice ate apples.
–After lexical analysis, we have got a sequence of tokens:

 N(Alice) V(ate) N(apples) Period(.)
–The goal of syntax analysis is to know it’s a statement:

 S(Alice) V(ate) O(apples)

• In programming language, we want to know how the
code can be derived from the grammar
–By knowing which rules we are using, we can get the

meaning of the code
10

Friday, January 25, 2013

Yacc and Bison

• Yacc - Yet Another Compiler Compiler
–Using a (Yacc) compiler to generate another compiler!

• Automatically generates an LALR parser given the
CFG of a language
–Requires a scanner as its front-end to recognize the

terminals

• Bison: a Yacc-compatible GNU replacement
–Just like Flex to Lex
–In addition to LALR parser, it can also generate more

kinds of LR parsers

11

Friday, January 25, 2013

Yacc Syntax

• Structure of a .y file:

DECLARATIONS
%%
RULES
%%
USERCODE

12

Friday, January 25, 2013

Yacc Example: In-fix Calculator v1 (1/2)

%{
#define YYSTYPE int
#include <math.h>
#include <stdio.h>
int yylex();
%}

/* Bison declarations. */
%token NUM

%% /* The grammar follows. */

input:
 /* empty */
 | '\n' input
 | exp '\n' { printf("%d\n", $1); } input
 ;

exp:
 NUM { $$ = $1; }
 | exp '+' exp { $$ = $1 + $3; }
 | exp '-' exp { $$ = $1 - $3; }
 | exp '*' exp { $$ = $1 * $3; }
 | exp '/' exp { $$ = $1 / $3; }
 | '-' exp { $$ = -$2; }
 | exp '^' exp { $$ = pow($1, $3); }
 | '(' exp ')' { $$ = $2; }
 ;

%%

int main() {
 return yyparse();
}

13

Adapted from http://www.gnu.org/software/bison/manual/html_node/Infix-Calc.html#Infix-Calc

$n : yylval of the nth symbol
$$: yylval for the resulting symbol

@n : yylloc of the nth symbol
@$: yylloc of the resulting symbol

Friday, January 25, 2013

http://www.gnu.org/software/bison/manual/html_node/Infix-Calc.html#Infix-Calc
http://www.gnu.org/software/bison/manual/html_node/Infix-Calc.html#Infix-Calc

Yacc Example: In-fix Calculator v1 (2/2)

• Header file generation:
–bison -d calc.y

• Compilation & execution:
–flex calc.l
–bison calc.y
–gcc lex.yy.c calc.tab.c -ll -ly

• 30 shift/reduce conflicts!
–Need to resolve ambiguities

• 1+2*3 is 7 but 2*3+1 is 8?
–Introduce new nonterminals to implement operator

precedence
14

Friday, January 25, 2013

Yacc Example: In-fix Calculator v2 (1/2)

/* Bison declarations. */
%token NUM

%% /* The grammar follows. */

input:
 /* empty */
 | '\n' input
 | exp '\n' { printf("%d\n", $1); } input
 ;

exp:
 term { $$ = $1; }
 | exp '+' exp { $$ = $1 + $3; }
 | exp '-' exp { $$ = $1 - $3; }
 ;

term:
 fact { $$ = $1; }
 | term '*' term { $$ = $1 * $3; }
 | term '/' term { $$ = $1 / $3; }
 ;

fact:
 pow { $$ = $1; }
 | '-' fact { $$ = -$2; }
 ;

pow:
 elm { $$ = $1; }
 | pow '^' pow { $$ = pow($1, $3); }
 ;

elm:
 NUM { $$ = $1; }
 | '(' exp ')' { $$ = $2; }
 ;

%%

15

Adapted from http://www.gnu.org/software/bison/manual/html_node/Infix-Calc.html#Infix-Calc

Friday, January 25, 2013

http://www.gnu.org/software/bison/manual/html_node/Infix-Calc.html#Infix-Calc
http://www.gnu.org/software/bison/manual/html_node/Infix-Calc.html#Infix-Calc

Yacc Example: In-fix Calculator v2 (2/2)

• 9 shift/reduce conflicts remaining!

• 2*6/3 is 4 but 6/3*2 is 1?
–Use only left and right recursion in a rule to implement

operator associativity

16

Friday, January 25, 2013

Yacc Example: In-fix Calculator v3 (1/2)

/* Bison declarations. */
%token NUM

%% /* The grammar follows. */

input:
 /* empty */
 | '\n' input
 | exp '\n' { printf("%d\n", $1); } input
 ;

exp:
 term { $$ = $1; }
 | exp '+' term { $$ = $1 + $3; }
 | exp '-' term { $$ = $1 - $3; }
 ;

term:
 fact { $$ = $1; }
 | term '*' fact { $$ = $1 * $3; }
 | term '/' fact { $$ = $1 / $3; }
 ;

fact:
 pow { $$ = $1; }
 | '-' fact { $$ = -$2; }
 ;

pow:
 elm { $$ = $1; }
 | elm '^' pow { $$ = pow($1, $3); }
 ;

elm:
 NUM { $$ = $1; }
 | '(' exp ')' { $$ = $2; }
 ;

%%

17

Adapted from http://www.gnu.org/software/bison/manual/html_node/Infix-Calc.html#Infix-Calc

Friday, January 25, 2013

http://www.gnu.org/software/bison/manual/html_node/Infix-Calc.html#Infix-Calc
http://www.gnu.org/software/bison/manual/html_node/Infix-Calc.html#Infix-Calc

Yacc Example: In-fix Calculator v3 (2/2)

• Finally we got 0 conflict!

• Exercise: error handling

• It is tedious to introduce so many nonterminals and
examine recursions, and the code is hard to
maintain

• Yacc provides some directives to make it easier to
write the grammar

18

Friday, January 25, 2013

Yacc Example: In-fix Calculator v4

/* Bison declarations. */
%token NUM
%left '+' '-'
%left '*' '/'
%left NEG /* negation--unary minus */
%right '^'

%% /* The grammar follows. */

input:
 /* empty */
 | '\n' input
 | exp '\n' { printf("%d\n", $1); } input
 ;

exp:
 NUM { $$ = $1; }
 | exp '+' exp { $$ = $1 + $3; }
 | exp '-' exp { $$ = $1 - $3; }
 | exp '*' exp { $$ = $1 * $3; }
 | exp '/' exp { $$ = $1 / $3; }
 | '-' exp %prec NEG { $$ = -$2; }
 | exp '^' exp { $$ = pow($1, $3); }
 | '(' exp ')' { $$ = $2; }
 ;

%%

19

Adapted from http://www.gnu.org/software/bison/manual/html_node/Infix-Calc.html#Infix-Calc

Friday, January 25, 2013

http://www.gnu.org/software/bison/manual/html_node/Infix-Calc.html#Infix-Calc
http://www.gnu.org/software/bison/manual/html_node/Infix-Calc.html#Infix-Calc

Constructing AST

• Instead of do the calculation in place, we need to
return a specific AST node in each action

20

exp:
 NUM
 { $$ = new IntConstNode($1); }
 | exp '+' exp
 { $$ = new AddNode($1, $3); }
 | exp '-' exp
 { $$ = new SubtractNode($1, $3); }
 | exp '*' exp
 { $$ = new MultiplyNode($1, $3); }
 | exp '/' exp
 { $$ = new DivideNode($1, $3); }
 | '-' exp %prec NEG
 { $$ = new NegateNode($2); }
 | exp '^' exp
 { $$ = new ExponentNode($1, $3); }
 | '(' exp ')'
 { $$ = $2; }
 ;

ExponentNode

AddNode

MultiplyNodeIntConstNode
value: 1

IntConstNode
value: 2

IntConstNode
value: 3

IntConstNode
value: 2

base exponent

left right

left right

AST of “(1+2*3)^2”

Friday, January 25, 2013

References

• Manual of Bison - http://www.gnu.org/software/bison/
manual/html_node/index.html

• http://dinosaur.compilertools.net/#yacc

• http://dinosaur.compilertools.net/#bison

• http://epaperpress.com/lexandyacc/

21

Friday, January 25, 2013

http://www.gnu.org/software/bison/manual/html_node/index.html
http://www.gnu.org/software/bison/manual/html_node/index.html
http://www.gnu.org/software/bison/manual/html_node/index.html
http://www.gnu.org/software/bison/manual/html_node/index.html
http://dinosaur.compilertools.net/#yacc
http://dinosaur.compilertools.net/#yacc
http://dinosaur.compilertools.net/#bison
http://dinosaur.compilertools.net/#bison
http://epaperpress.com/lexandyacc/
http://epaperpress.com/lexandyacc/

Thank you & all the best

22

Friday, January 25, 2013

