
EECS483 D6: Project 3 Overview

Chun-Hung Hsiao

Feb 15, 2013

1Special thanks to Ashutosh
Friday, February 15, 2013

Announcement

• We do have a discussion session on 2/22 (schedule
updated)

• Homework 3 due on the next discussion session

• Project 3 announced and due on 3/18
–Checkpoint on 3/11

• Project 3 checkpoint policy updated

2

Friday, February 15, 2013

Project 3 Overview

• Project divided into two
stages
–Checkpoint on 3/11
–Final submission on 3/18

• Objective: Semantic analysis
–Locate semantic errors in

Decaf
–Just one step away from code

generation!

• Not a one-night shot!

3

!"#$%&'()*&'+,$,-(./01"%23(

4+*2&#()*&'+,$,-(./01"%2(5(

!"#$%&'()%$*+,-,.(/012"'3(4(

607"(8"*"/&90*-(./01"%2(:(

Friday, February 15, 2013

Checkpoint Policy

• To make sure that you start the project early

• The checkpoint worth 10 extra bonus points

• Will test your submissions on a smaller test set
–10 points for passing 20 tests or more
–5 points for passing 10 tests or more
–0 point otherwise

• No late day for checkpoint

• Use project number “3c” before checkpoint; use “3”
after that
–You need to submit your code after checkpoint to get the

full credits
4

Friday, February 15, 2013

Infrastructure

• Classes for AST nodes are the same as in PP2
–The printing functionality is removed

• Replace parser.y with your own one in PP2
–Call program->Check() instead of program->Print()
–Make sure that you use the correct location information

when allocating a new AST node
–You can use the sample solution after we release it

• A sample dcc provided in the solution/ folder
–Construct your own test case and use it to generate a

reference output

5

Friday, February 15, 2013

What to Do for Checkpoint

• Read the semantic rules of Decaf carefully

• Scope system: design strategy for detecting scopes
–What info needs to be recorded with each scope?
–How will you store the scope info?
–What is the rules of scope visibility?

• Type system: type inference and type checking
–What is the type of the result of an expression?
–What types are allowed in the context?

• Report errors when the semantic rules are violated

6

Friday, February 15, 2013

Error Reporting

• No output if there is no semantic error

• In case of semantic error
–Report the line number of the error
–Print a string describing the error

• You don’t need to prepare the output all on your own
–Line numbers are tracked when constructing the AST
–Error strings are defined in errors.h/.cc
–Use the provided ReportError library to print the error

• Your job is to call the correct functions
corresponding to the errors discovered

7

Friday, February 15, 2013

Errors to be Reported at Checkpoint

• Conflicting declarations

• Undeclared identifiers

• Incomplete implementations

• Invalid self-references

• Invalid use of arrays

8

Friday, February 15, 2013

Conflicting Declarations

• ReportError::DeclConflict()
*** Declaration of 'a' here conflicts with declaration on line 5

–Redeclaring a variable/function/class/interface
–Formal parameters of the same name

• ReportError::OverrideMismatch()
*** Method 'b' must match inherited type signature

–Overriding a method with a different type signature

9

Friday, February 15, 2013

Undeclared Identifiers

• ReportError::IdentifierNotDeclared()
*** No declaration for class 'Cow' found

*** No declaration for function 'Binky' found

–Using a variable/function/class/interface without
declaration

10

Friday, February 15, 2013

Incomplete Implementations

• ReportError::InterfaceNotImplemented()
*** Class 'Cow' does not implement entire interface 'Printable'

–Missing a method listed in the interface that a class is
implementing

11

Friday, February 15, 2013

Invalid Self-references

• ReportError::ThisOutsideClassScope()
*** 'this' is only valid within class scope

–Using the “this” keyword outside a class method

12

Friday, February 15, 2013

Invalid Use of Arrays

• ReportError::BracketsOnNonArray()
*** [] can only be applied to arrays

–Using [] operator on a non-array variable/expression

• ReportError::SubscriptNotInteger()
*** Array subscript must be an integer

–Accessing an array element with a non-integer index

• ReportError::NewArraySizeNotInteger()
*** Size for NewArray must be an integer

–Allocating an array with a non-integer size

13

Friday, February 15, 2013

Scope System

• What are different kinds of scopes?

• What to record within each scope?

• How to record a scope?
–You can use the provided Hashtable library to map

identifiers to their declarations

• How to lookup an identifier in the scope system?

• Do different kinds of scopes need special handling?

14

Friday, February 15, 2013

Type System

• How to get the type of an identifier?

• How to know the type of the result of an expression

• How to check if the type of a declaration or an
expression is allowed in the context?
–Type equivalence
–Type compatibility (not needed at checkpoint)

15

Friday, February 15, 2013

Implementing Semantic Analysis

• Two approaches: 1-pass or 2-pass

• 1-pass approach
–Reporting errors when parsing the input program
–Implemented in the actions in parser.y, thus highly

coupled with the parser code
–Fast and memory-efficient compilation, but hard to

implement certain features of Decaf

• 2-pass approach
–Reporting errors by examining the AST after the input

program is completely parsed
–Implemented in the AST nodes
–Suggested approach for PP3

16

Friday, February 15, 2013

Method 1: Polymorphic Node::Check()

• Implement a polymorphic Check() function for each
AST node
–Maintaining scope and type information
–Recursively check every child node
–Report errors if the check failed

17

+ Check() : void

Node

+ Check() : void

VarDecl

+ Check() : void

Expr

Friday, February 15, 2013

Method 2: Visitor Design Pattern

• The Visitor pattern is a perfect fit for developing a
compiler
–Decoupling the checking code from the AST nodes
–More extensible in software engineering

18

+ Accept(v : Visitor) : void

Node

+ Accept(v : Visitor) : void

VarDecl

+ Accept(v : Visitor) : void

Expr

void VarDecl::Accept(Visitor v) {
 v.VisitVarDecl(this);
}

void Expr::Accept(Visitor v) {
 v.VisitExpr(this);
}

+ VisitVarDecl(node : VarDecl) : void
+ VisitExpr(node : Expr) : void

Visitor

+ VisitVarDecl(node : VarDecl) : void
+ VisitExpr(node : Expr) : void

SemanticCheckVisitor

+ VisitVarDecl(node : VarDecl) : void
+ VisitExpr(node : Expr) : void

CodeGenVisitor

Friday, February 15, 2013

Beyond the Checkpoint

• Implementing type compatibility checking

• Scoping rule for the “.” operator

• Handling cascading errors

19

Friday, February 15, 2013

Thanks & all the best!

20

Friday, February 15, 2013

