Fractals, mountains, and trees

- Coastlines
- Snowflakes
- Sponges
- Mountains, terrains
- Trees, bushes
Real Coastline
Real Coastline

9/10/98
Real Coastline

© 2000 GlobeXplorer, VantagePoint Network
Real Coastline

- Zooming in
How to represent and store all that?
- Cubic Bezier curves?
- Or do we generate it on the fly maybe?
- Koch curve:

 What is the length of this curve?

 $1, 4*(1/3), 16*(1/9), 64*(1/27), \ldots \left(\frac{4}{3}\right)^n \ldots \infty$
• Let’s go back to simple shapes…
 - line: dimension $d = 1$
 - $1, 2*(1/2)^1, 4*(1/4)^1, \ldots$
 - square: dimension $d = 2$
 - $1, 4*(1/2)^2, 16*(1/4)^2, \ldots$

Fractal dimension

- Line: dimension $d = 1$
 - scaling factor $s = 1/2$
 - number of subparts $n = 2$
- Rectangle: dimension $d = 2$
 - $s = 1/2$
 - $n = 4$
- In general:
 - $ns^d = 1$
 - $d = \log n / \log(1/s)$
Fractal dimension

Koch curve:
\[n = 4, \ s = 1/3, \ \text{so} \ d = \log 4 / \log 3 \approx 1.26 \]

L-systems

• How can we produce such objects?
• L-system is
 - symbols
 - language describing a 2d/3d scene
 - an axiom
 - starting point
 - rewriting rules
L-systems

- Lindenmayer 1968
- Turtle graphics (Seymour Papert)
 - F draw forward
 - f move forward
 - + turn left
 - - turn right
 - [push current state onto stack
 -] pop current state from the stack

Koch l-system

- F+F--F+F
 \[\text{angle}=\frac{2\pi}{6} \]

Koch
 \{
 \text{Angle 6}
 \text{Axiom F}
 \text{F=F+F--F+F}
 \}
Generating Koch’s snowflake

- Start: F
- Generation 1:
 - F+F--F+F

- Generation 2:
 - F+F--F+F+F+F--F+F--F+F+F+F+F--F+F--F+F+F+F+F--F+F

Example in 2d

Example {
 Angle 16
 Axiom ++++FS
 S=+[FS]-[FS]-[FS]
}
Koch Island

KochIsland {
 Angle 4
 Axiom F+F+F+F
 F=F+F-F-F+F+F-F
}

Plants in 3d

- Similarly:
 - 3d transforms
 - rotations
 - nested transforms
 - colors
 - position

- Przemyslaw Prusinkiewicz, U. of Calgary
Terrain modeling

- Fractal mountains
 - geometry
 - colors
 - vegetation
Fractional Brownian Motion

Add random values at finer and finer scales
Fractional Brownian Motion

- Additional parameters…

2D: Creating fractal mountains

- Start with planar triangulation
- Let user displace coarse triangles
- Recursively subdivide and displace randomly
Elevation

- Elevation governs:
 - color
 - snow
 - grass
 - trees distribution
 - roughness

Sky, clouds

- Cloud texture

\[I(x, y) = \sum_{i=1}^{n} c_i \sin(\omega^x_i x + p^x_i) \sum_{i=1}^{n} c_i \sin(\omega^y_i y + p^y_i) \]

\[\omega^x_{i+1} = 2\omega^x_i \]
\[\omega^y_{i+1} = 2\omega^y_i \]
\[c_{i+1} = 0.707c_i \]