

Transforms II

Lecture 4

Overview

- Homogeneous Coordinates
- 3-D Transforms
- Viewing Projections

Homogeneous Coordinates

Lecture 4

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} \frac{x}{w} \\ \frac{y}{w} \\ \frac{z}{w} \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \begin{bmatrix} \frac{x}{w} \\ \frac{y}{w} \\ \frac{z}{w} \\ 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

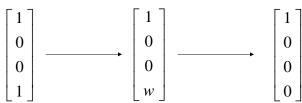
Allows translations to be included into matrix transform.

Allows us to distinguish between a vector and a point.

In perspective transformations the extra coordinate can be thought to contain the perspective information or scaling.

Homogeneous Coordinates

Lecture 4



- •As w gets smaller Real space X gets Larger
- •When w reaches 0 X is now at infinity
- •Homogeneous coordinates allows us to deal mathematically with infinity

3

Homogeneous Coordinates

Lecture

$$\begin{bmatrix} \frac{x}{w} \\ \frac{y}{w} \\ \frac{z}{w} \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \\ 0 \end{bmatrix}$$
Vector

Many different homogeneous space vectors for the same real space point

Point

Vectors can not be translated but can be scaled and rotated

Points can be translated and blended!

Homogeneous Coordinates

Lecture 4

Attribute	Vector	Point
Represents	Magnitude and Direction	Location
Origin	Unique	Arbitrary
Transformation	Liner Scale and	Affine Move
	Rotate	

$$\begin{bmatrix} x \\ y \\ z \\ 0 \end{bmatrix} \qquad \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Vector Point

3-D Transforms

Lecture 4

Rotation

$$\begin{bmatrix} x''' \\ y''' \\ z''' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x'' \\ y'' \\ z'' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\phi & 0 & \sin\phi & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\phi & 0 & \cos\phi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix}$$

Rotation about X

Rotation about Y

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \lambda & -\sin \lambda & 0 & 0 \\ \sin \lambda & \cos \lambda & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Rotation about Z

3-D Transforms

Lecture 4

Rotation

$$\begin{bmatrix} x''' \\ y''' \\ z''' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\phi & 0 & \sin\phi & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\phi & 0 & \cos\phi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\lambda & -\sin\lambda & 0 & 0 \\ \sin\lambda & \cos\lambda & 0 & 0 \\ 0 & 0 & 1 & 0 \\ z \\ 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

7

3-D Transforms

Lecture

Scale

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} scalex & 0 & 0 & 0 \\ 0 & scaley & 0 & 0 \\ 0 & 0 & scalez & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

3-D Transforms

Lecture 4

Translation

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \Delta x \\ 0 & 1 & 0 & \Delta y \\ 0 & 0 & 1 & \Delta z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

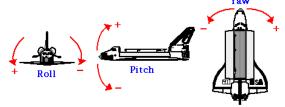
9

3-D Transforms

Lecture

Composite Rotation Matrix

$$[R] = [Roll][Pitch][Yaw]$$

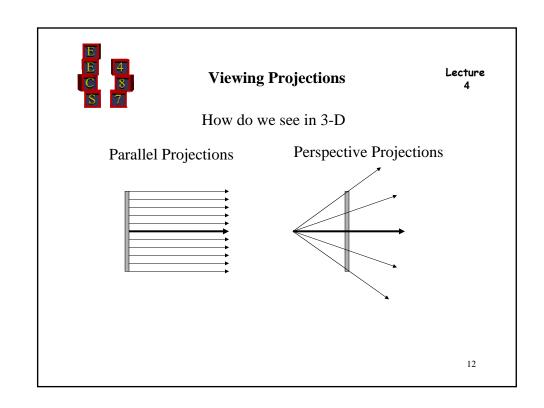


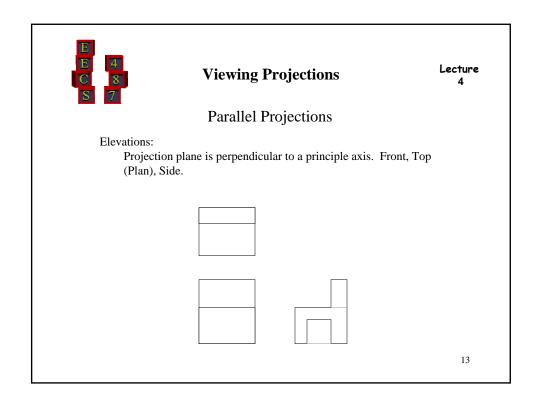
$$[M] = [R][S][T]$$

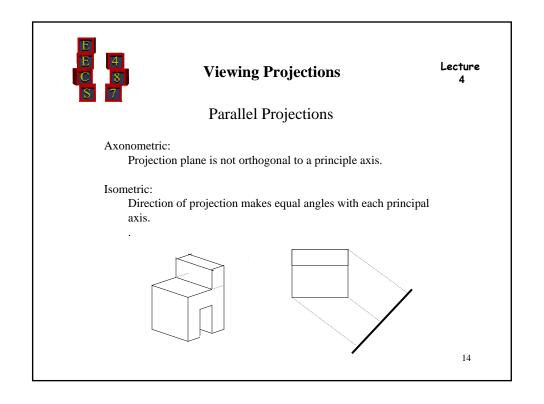
Transform composition

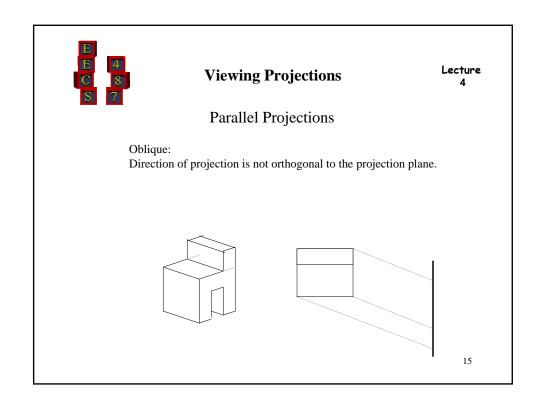
Lecture 4

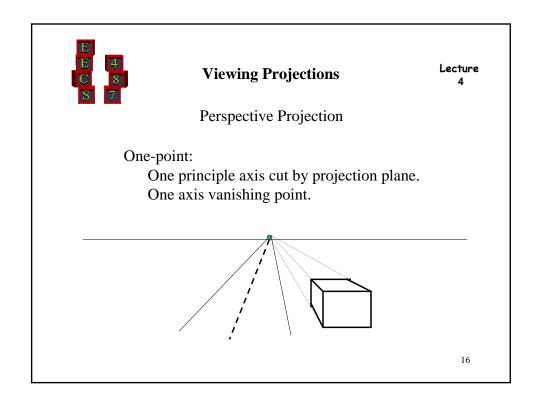
- Ship moves
- Character moves
- All represented as a sequence of matrix transforms (dependent on time)

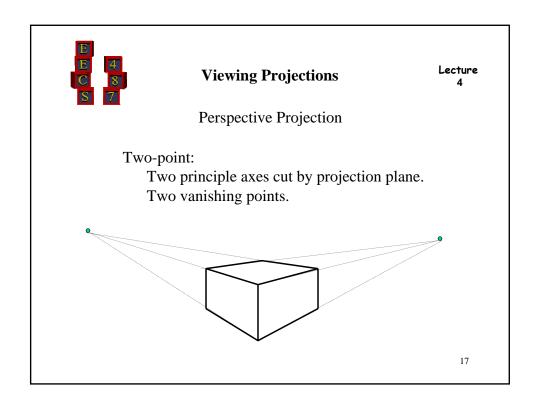


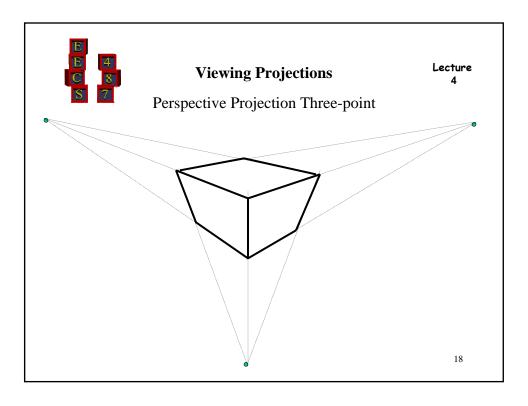












Viewing Projections

Lecture 4

Definitions

VRC - Viewing Reference Coordinate

VRP - View Reference Point
VPN - View Plane Normal
VUP - View Up Direction
DOP - Direction of Projection

PRP - Projection Reference Point

Center of Projection

VP - Viewing Plane

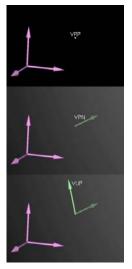
BCP - Back Clipping Plane FCP - Front Clipping Plane

19

Notation

Lecture

- VRP camera position
- VPN view plane normal
- VUP view up direction



20

 $http://www.scs.leeds.ac.uk/cuddles/hyperbks/Rendering/Pipeline/view_def_vref.html$

Parallel Projections

Lecture 4

- 1. Translate VRP to the origin
- 2. Rotate VRC such that n axis (VPN) becomes z, u axis becomes x, and v axis becomes y.
- 3. Shear such that the direction of projection becomes parallel to the z axis.
- 4. Translate and scale into the parallel-projection canonical view volume.

21

Parallel Projections

Lecture 4

Step1:

Simply the negative of the VRP vector

$$\begin{bmatrix} 1 & 0 & 0 & -vrp_x \\ 0 & 1 & 0 & -vrp_y \\ 0 & 0 & 1 & -vrp_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Parallel Projections

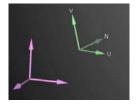
Lecture

Step2:

$$\overrightarrow{R}_{z} = \frac{\overrightarrow{VPN}}{|\overrightarrow{VPN}|}$$

$$\overrightarrow{R_z} = \frac{\overrightarrow{VPN}}{|\overrightarrow{VPN}|} \qquad \overrightarrow{R_x} = \frac{\overrightarrow{VUP} \times \overrightarrow{R_z}}{|\overrightarrow{VUP} \times \overrightarrow{R_z}|} \qquad \overrightarrow{R_y} = \overrightarrow{R_z} \times \overrightarrow{R_x}$$

$$\overrightarrow{R_y} = \overrightarrow{R_z} \times \overrightarrow{R_x}$$



$$R = \begin{bmatrix} R_{1x} & R_{2x} & R_{3x} & 0 \\ R_{1y} & R_{2y} & R_{3y} & 0 \\ R_{1z} & R_{2z} & R_{3z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

23

Parallel Projections

Lecture

$$CW = \begin{bmatrix} \frac{u_{\text{max}} + u_{\text{min}}}{2} \\ \frac{v_{\text{max}} + v_{\text{min}}}{2} \\ 0 \\ 1 \end{bmatrix}$$

$$PRP = \begin{bmatrix} prp_u \\ prp_v \\ prp_n \end{bmatrix}$$

$$CW = \begin{bmatrix} \frac{u_{\text{max}} + u_{\text{min}}}{2} \\ \frac{v_{\text{max}} + v_{\text{min}}}{2} \\ 0 \\ 1 \end{bmatrix} \qquad PRP = \begin{bmatrix} prp_u \\ prp_v \\ prp_n \\ 1 \end{bmatrix} \qquad DOP = \begin{bmatrix} dop_x \\ dop_y \\ dop_z \\ 0 \end{bmatrix} = CW - PRP$$

At this point we are already in Eye Coordinates

$$\begin{bmatrix} 1 & 0 & shear_x & 0 \\ 0 & 1 & shear_y & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & shear_{x} & 0 \\ 0 & 1 & shear_{y} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad shear_{x} = -\frac{dop_{x}}{dop_{z}}$$

The shear is zero in the simple case: CW=(0,0,*) and PRP=(0,0,*)

Parallel Projections

Lecture 4

Translation

$$\begin{bmatrix} 1 & 0 & 0 & -\frac{u_{\text{max}} + u_{\text{min}}}{2} \\ 0 & 1 & 0 & -\frac{v_{\text{max}} + v_{\text{min}}}{2} \\ 0 & 0 & 1 & -F \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Scale

$$\begin{bmatrix} \frac{2}{u_{\text{max}} - u_{\text{min}}} & 0 & 0 & 0 \\ 0 & \frac{2}{v_{\text{max}} - v_{\text{min}}} & 0 & 0 \\ 0 & 0 & \frac{1}{F - B} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

25

Perspective Projections

Lecture

- 1. Translate VRP to the origin
- 2. Rotate VRC such that n axis (VPN) becomes z, u axis becomes x, and v axis becomes y.
- 3. Translate such that the center of Projection (COP), given by the PRP, is at the origin.
- 4. Shear such that the center line of the view volume becomes the z axis.
- 5. Scale such that the view volume becomes the canonical perspective view volume, the truncated right pyramid defined by the six planes

Perspective Projections

Lecture

Step1:

1:
$$\begin{bmatrix} 1 & 0 & 0 & -vrp_x \\ 0 & 1 & 0 & -vrp_y \\ 0 & 0 & 1 & -vrp_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Step2:

$$R_z = \frac{VPN}{|VPN|}$$
 $R_x = \frac{VUP \times R_z}{|VUP \times R_z|}$ $R_y = R_z \times R_x$

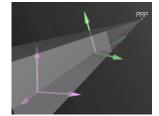
$$R = \begin{bmatrix} R_{1x} & R_{2x} & R_{3x} & 0 \\ R_{1y} & R_{2y} & R_{3y} & 0 \\ R_{1z} & R_{2z} & R_{3z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Perspective Projections

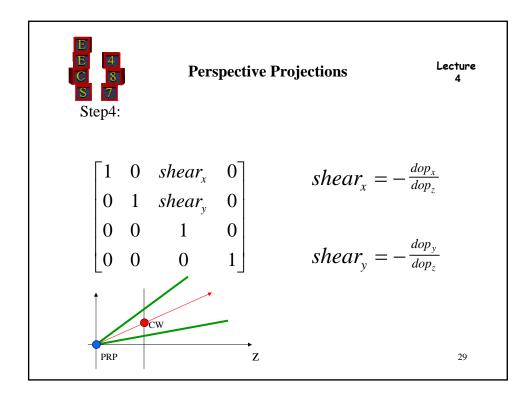
Lecture

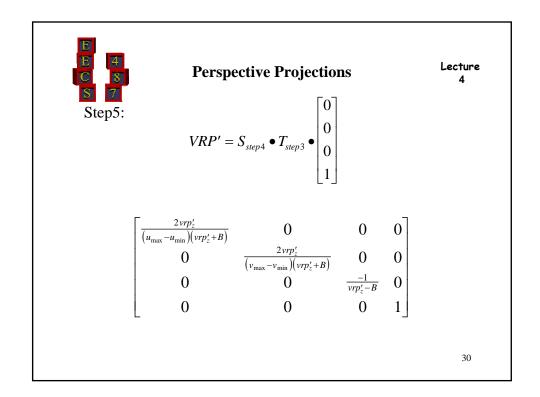
Step3:

$$\begin{bmatrix} 1 & 0 & 0 & prp_{u} \\ 0 & 1 & 0 & prp_{v} \\ 0 & 0 & 1 & prp_{n} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



PRP becomes the origin





Perspective Projections

Lecture 4

$$\begin{bmatrix} \text{Othrographic} \\ \text{Projection} \\ \text{Matrix} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -D \\ 0 & 0 & \left(\frac{1}{D}\right) & 0 \end{bmatrix} \quad Where: D = \cot\left(\frac{fov}{2}\right)$$

$$\begin{bmatrix} x \\ y \\ (z - D) \\ \left(\frac{z}{D}\right) \end{bmatrix} \Rightarrow \begin{bmatrix} D \frac{x}{z} & D \frac{y}{z} & D \frac{z - D}{z} \end{bmatrix} = \begin{bmatrix} X & Y & Z \end{bmatrix}$$

31

Another way to look at it

Lecture 4

- Canonical view volume
 - OpenGL
 - Cube from (-1,-1,-1) to (1,1,1)
 - Near plane rectangle
 (left, bottom, -near) becomes (-1,-1,-1)
 (right, top, -near) becomes (1,1,-1)
 - Far plane maps onto z=1

\begin{pmatrix} 2 \text{ near } & 0 & A & 0 \\ 0 & \frac{2 \text{ near }}{t \text{ op-bottom}} & B & 0 \\ 0 & 0 & C & D \\ 0 & 0 & -1 & 0 \end{pmatrix}

 $A = \frac{right + left}{right - left}$ $B = \frac{top + bottom}{top - bottom}$

 $C = -\frac{far + near}{far - near}$ $D = -\frac{2 far near}{far - near}$

0<near<far **BUT** corresponds to negative z-axis