Homework Assignment #1 EECS 487 Fall 2003 Due: September 29th 2003

DO NOT use any electronic devices to do Problem 1.

SHOW ALL YOUR WORK!!

Problem #1.

Find the Composite Rotation Matrix given the rotation order: (Just the equations!)

[R] = [Yaw] [Pitch] [Roll]													
$\begin{bmatrix} x^{m} \\ y^{m} \\ z^{m} \\ 1 \end{bmatrix} =$	[1	0	0	0]	$\int \cos f$	0	$\sin f$	0]	$\cos l$	– sin 1	0	0]	$\begin{bmatrix} x \end{bmatrix}$
y‴	0	cos q	$-\sin q$	0	0	1	0	0	sin I	$\cos l$	0	0	y
z‴ [_]	0	sin q	cos q	0	$-\sin f$	0	$\cos f$	0	0	0	1	0	<i>z</i> .
$\lfloor 1 \rfloor$	0	0	0	1	0	0	0	1	0	0	0	1	[1]

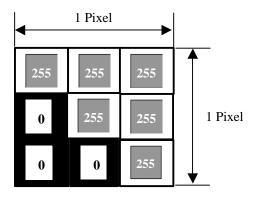
Show your work!

Problem #2.

If you are given a 4 x 4 Matrix that looks like:

$\begin{bmatrix} x''' \end{bmatrix}$		$\cos l$	$-\sin l$	0	Δx	$\begin{bmatrix} x \end{bmatrix}$	
<i>y</i> ‴	_	sin I	$\cos l$	0	Δy	y	
z.‴	-	0	0	1	Δz	Z.	
1		0	0	0	1	1	

And we know that this is a composite matrix of Translation and Rotation and order is important.


	$\cos l$	$-\sin l$	0	0]	[1	0	0	Δx
D _	sin I	$\cos l$	0	0	T = 0	1	0	Δy
Λ =	0	0	1	0	I = 0	0	1	Δz
	0	0	0	1	$T = \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}$	0	0	1

a. What is the order that the Translation and Rotation get multiplied to get this composite Matrix?

b. What does this tell you about what transform happens First in a Composite Matrix?

Problem #3.

1. Given the following sub-sampled pixel,

a) What is the pixel value if an un-weighted filter is used?

b) What is the pixel value with the following weighted filter?

1	2	3
1	2	3
1	2	3