EECS 487December 13, 2006

- today:
 - last class!
 - homework 4 due
 - review for exam
- final exam:
 - December 21, 1:30 3:30 pm
 - EECS 1301 1303

possible topics

- perspective transform
- splines
- animation
- ray tracing
- radiosity
- precomputed radiance transfer
- non-photorealistic rendering

previous exam

- the 2nd exam from fall 2005 is available on course syllabus page
- or this link:

http://www.eecs.umich.edu/courses/eecs487/f06/pdf/exam2-f05.pdf

- of course, not all parts are relevant for this semester
- review homework, plus lecture slides on ray-tracing, radiosity, PRT, NPR

perspective transform

- know how to use perspective matrix P:
 - given P, tell how a given 3D point is transformed
- main difference from other transforms (e.g. scale or translation): need to divide by homogeneous coordinate

splines

- given description of polynomial spline, derive its "constraint matrix"
- given basis matrix, derive basis functions
 - know how to use them
- compare types of splines
 - B-spline, Bezier, Catmull-Rom, ...
- properties of splines:
 - approximating, interpolating, local control,
 C¹, C², convex hull property, ...

animation

describe animation principles:

- squash and stretch
- anticipation
- follow through
- secondary motion
- slow in / slow out
- staging
- ... others?

ray tracing

- compute viewing ray, given camera and window parameters
- intersect a ray with an implicit object like a sphere or cylinder.
- tell how to achieve regular sampling,
 e.g. over a disk, sphere, triangle...
- difference between classical ray-tracing and monte carlo ray tracing
- assumptions and limitations of each

radiosity

- given a simple setup (like HW4, p. 560 problem 1), solve for radiosity.
 - simple case: e.g. 1 or 2 patches
- assumptions and limitations

radiosity

- given a simple setup (like HW4, p. 560 problem 1), solve for radiosity.
 - simple case: e.g. 1 or 2 patches
- assumptions and limitations:
 - scene is static
 - pure diffuse surfaces
 - result is independent of view
 - effects supported: soft shadows, color bleeding
 - high overhead (slow method)

precomputed radiance transfer

- what is the basic idea?
- what is precomputed?
- assumptions and limitations in basic PRT

precomputed radiance transfer

- what is the basic idea?
- what is precomputed?
 - occlusion info
- assumptions and limitations in basic PRT
 - scene is static
 - simple BRDFs (diffuse or "glossy")
 - low-frequency lighting
 - no point lights (!)

non-photorealistic rendering

- basic idea of "comprehensible rendering"
 - G-buffers
 - image processing
 - e.g. silhouettes from depth buffer
- basic idea of "painterly rendering"
 - stroke "particles" on 3D surfaces
 - reference images (same as G-buffers)
 - project particles to 2D, get attributes from reference images
 - render using painter's algorithm