
1

EECS 487

September 25, 2006

news

• visit from EA on Wednesday
• no special assignment talk today

(unless I do one…)
• proj2 out tomorrow

(due in 2 weeks, 6 days)

preliminary issues
• coordinate systems

– eye space, world space

• transformations: 4x4 matrices
– combination of rotate, scale, translate, and more

• homogeneous coordinates: points & vectors
– 4th coordinate added to 3D points and vectors

– for points it’s 1, for vectors it’s 0

– thus: P – P = V, P + V = P, V + V = V, P + P = ?

• more on these issues soon

OpenGL lighting

• based on simplifying assumptions:
– several lights (e.g. 8)
– types:

• directional
• positional
• spot light

– reflected light is a combination of 3 terms:
• ambient (general background level of brightness)
• diffuse (like latex paint – not shiny)
• specular (mirror-like; shiny)

diffuse vs. specular

• diffuse:
– light reflects equally in all directions

• specular:
– light reflects in one direction (like a mirror)

• which is more realistic? Plate 16. Twelve spheres, each with different material parameters. The row
properties are as follows: row 1 - No ambient reflection; row 2 - Grey ambient
reflection; row 3 - Blue ambient reflection. The first column uses a blue diffuse
material color with no specular properties. The second column adds white specular
reflection with a low shininess exponent. The third column uses a high shininess
exponent and thus has a more concentrated highlight. The fourth column uses the
blue diffuse color and, instead of specular reflection, adds an emissive component.

2

multiple lights

• OpenGL has a notion of global ambient
light, plus 8 (e.g.) individual light sources

• each light source has colors for:
– ambient
– diffuse
– specular

• is this physically-based?

material properties

• each surface is assigned “material” properties
• 4 colors:

– ambient
– diffuse

– specular

– emmisive

• plus:
– shininess (specular exponent)

computing final color

• color at a vertex comes from:
– global ambient light

– individual light contributions

– material properties

• in OGL fixed pipeline, lighting is computed
per vertex during vertex processing

• resulting colors interpolated across ∆’s

blackboard…

• details for light computations:
red book, chapter 6

application set up

• see red book, chapter 6
• online version:

http://glprogramming.com/red/chapter05.html

flow control in jot

GL_VIEW class renders the scene
geom/gl_view.H

1. clear buffer,

2. initialize OGL state (default values)
3. setup lights (see code example)

4. draw objects

3

drawing objects

loop over list of GELs (disp/gel.H)

generic scene object, includes 2D objects like text
in window corner, also 3D objects (GEOM:
geom/geom.H) that contain meshes

for each GEOM:

send material properties to OGL

send xform to OGL
draw BMESH (mesh/bmesh.H)

drawing a mesh

draw BMESH:

for each Patch (mesh/patch.H)

draw triangle strips using StripCB
(mesh/stripcb.H)

it sends to OGL:
vertex normals,
positions,
colors, etc., depending on type of StripCB

lets different shaders share same triangle strips

used in p2 for software lighting (send vert colors)

next

• project 2 out tomorrow
– OpenGL lighting model in software

– modified OpenGL lighting in GLSL
with added “abstraction”

– environment and bump mapping using GLSL

