Monte Carlo Ray Tracing

EECS 487
November 22, 2006

outline

e rendering algorithms:
— scan conversion
— ray casting
— ray tracing

— monte carlo ray tracing

scan conversion

for each triangle T
for each pixel In T
color the pixel (if depth test o0k)

scan conversion: analysis

e rendering window has p pixels
(e.g. ~1 million)

e scene has n triangles (e.g. ~200,000)
e average depth complexity 1sd (e.g. d < 4)

e what 1s an upper bound on # steps to render?

scan conversion: analysis

number of steps =n + p*d

e.g.: 4.2 million

ray casting

for each pi xel
construct corresponding ray r
Intersect r wwth scene
conpute color via lighting, textures

ray casting: analysis

e rendering window has p pixels
(e.g. ~1 million)

e scene has n triangles (e.g. ~200,000)
e (depth complexity not relevant)

e what 1s an upper bound on # steps to render?
(assuming ray intersections are brute force)

ray casting: analysis

number of steps = p*n

e.g. 200 billion

(50,000 times slower than scan conversion)

ray tracing

for each pi xel
construct corresponding ray r
Intersect r wwth scene
conpute color via lighting, textures
spawn 2 nore rays and recurse

ray tracing: analysis

e rendering window has p pixels
(e.g. ~1 million)

e scene has n triangles (e.g. ~200,000)
e depth of recursionisr (e.g. 5)

e what 1s an upper bound on # steps to render?
(assuming ray intersections are brute force)

10

ray tracing: analysis
number of ray tests depends on level of recursion:

1 level: 1 test (per pixel)
2 levels: 3 tests /

3 levels: 7 tests

r levels: 2" - 1 tests / \.
I\ N
4%7%

round up: ~2' tests

Il

ray tracing: analysis
ray tests (per pixel): 2' tests
steps per ray test: n

total number of steps: p * n * 2'

e.g.: 32 times slower than ray casting
in our example (ignoring shadow rays)

12

ray tracing analysis

* not so bad!

e can we make it slower?

13

ray tracing analysis

* not so bad!

e can we make it slower?

e yes!

14

monte carlo ray tracing

for each pi xel
construct corresponding ray r
Intersect r wwth scene
conpute color via lighting, textures

spawn nultiple additional rays
and recurse

Q: how is this different from ray tracing?

15

monte carlo ray tracing

for each pi xel
construct corresponding ray r
Intersect r wwth scene
conpute color via lighting, textures

spawn nultiple additional rays
and recurse

A: “multiple” instead of 2 "

16

Q: why cast all these additional rays?

e A: get better stmulation of global illumination

e ¢.g. soft shadows:
— instead of 1 shadow ray to each point light,
— cast multiple (random) rays to each area light
— or: cast 1 (random) ray to each area light

— fewer samples yields more “noise”

17

groups.csail.mit.edu/graphics/classes/6.837/F03/lectures/19_MonteCarlo.pdf 18

e soft shadows

¢

other effects

19

soft shadows
glossy reflection
color bleeding
motion blur

depth of field

caustics?

other effects

20

monte carlo ray tracing: analysis

same as ray tracing, except the “branching factor”

of the ray tree 1s not 2
call it b (e.g. b = 100)
recursion level: r (e.g. r=3)

ray tests (per pixel): b’ tests

21

monte carlo ray tracing: analysis

total number of steps: p * n * b’

(b/2)" times more work

(e.g. 50°, or 300 million times more work than
plain ray-tracing in our example)

22

observations

actually, maybe b = 100 was a tad high...

(but low values produce noise)

brute force ray tests are a bad 1dea here

(smarter method could be much faster)

need to limit the depth of recursion

(recurse when 1t will matter)

and the number of rays cast

shou!

d avoid

| work that makes no contributi%n

modification: monte carlo path tracing

e trace only 1 secondary ray per recursion
e but trace many primary rays per pixel

e (performs antialiasing as well)

24

monte carlo path tracing

trace ray:
find ray Iintersection wth nearest object
shade obj ect

shade obj ect:
sanple incomng light(via 1 randomray)
shade usi ng BRDF

25

Digression: what is a “BRDF”’?

26

Simple BRDFs: diffuse, specular reflection

[ACOMI A 3 a
\1g WY _?;Z li,’h*\-
di+fuse

a,ﬁ-gbinj

N %

S‘Fect-rlqr

General BRDF's

e Most real materials do not correspond to
either of those extremes (diffuse or specular)

e E.g., a glossy surface:

28

General BRDF's

* BRDF:

bi-directional reflectance distribution function

e For each incoming direction,
tells how much light will be reflected
in each outgoing direction

29

OK but, why “monte carlo”??

next few slides sampled from:
groups.csail.mit.edu/graphics/classes/6.837/F03/lectures/19_MonteCarlo.pdf

and also:

http://www.cs.utah.edu/classes/cs6620/lecture-2006-03-24-6up.pdf

30

monte carlo integration

e want to evaluate: { K *:() Jh(

o Use random variable x. with uniform probability:
l n
= é_ t‘F(Y{)
(-

31

improved version

o Use random variable X, with probability p,

n :
"

o the whole trick is to choose the X, and P,

32

Example: monte carlo integration of 1t

take a square
take a random point (X,y) 1n the square
test if it is in the Y4 circle (x* + y> < 1)

run a lot of trials to estimate the probability

the probability 1s 11/4

1.e.: your estimate times 4 .
1s approximately 1t

Example: monte carlo integration of 1t

e error depends on number of trials

34

link to ray tracing

e Integration over light source area:
— Soft shadows

e Integration over reflection angle:

— Blurry reflections (gloss)

e Integration over transmitted angle:

— Translucency (fuzzy transparency)

35

link to ray tracing

e Integration over camera lens:
— Depth of field

e Integration over time:
— Motion blur

36

sampling strategies

e Pure Monte Carlo approach says to pick a
random direction at each point

e Most rays will not hit a light source

e Kajiya style path tracing: pick a random light
source and sample it randomly

Good convergence for scenes dominated by
direct light

37

49 Samples per pixel 625 Samples per pixel

s lla

10000 Samples per pixel 100000 Samples per pixel

random sampling can be tricky

How to sample points on a disk uniformly?

e T
a" L

[T

|ETE| n g Html

ffd.wmlfram.comIDiskPoinf

sampling a disk uniformly

* wrong:
choose angle and radius uniformly:
0 € [0, 217]
re[0,1]
X =rcos(0), y =rsin(0)

e Q: what's wrong with this?

41

sampling a disk uniformly

* wrong:
choose angle and radius uniformly:
0 € [0, 217]
re[0,1]
X =rcos(0), y =rsin(0)

e Q: what's wrong with this?
A: samples are more crowded near center

42

sampling a disk uniformly

Right:
choose angle and r° uniformly:
0 € [0, 217]
r* € [0,1] mnote: r’, notr

X =rcos(0), y =rsin(0)

Creates more samples at larger raditses radii

43

monte carlo recap

e Turn integral into finite sum

e Use random samples

— more samples = more accuracy (less noise)
* Very tlexible
e Tweak sampling/probabilities for optimal result
e A lot of integration and probability theory

to get things right

44

wrap up...

e project 4 due in 1 week

e project 5 out then (11/29)

 Thanksgiving break starts now...

(well, after office hours)

45

