EECS 487

December 4, 2006

* Rodney Ma presentation
 precomputed radiance transfer (cont'd)
* project 5 concepts




support code

not jot
written by Prof. Guskov

command line raytracer:
srt scene.sce rendering.tga

“srt” = simple ray tracer

scene: lights, camera, objects, ...

output: targa image (see spec)



tasks

1.ray generation code

2.shading computations

3.interpolated normals for smooth shading
4.specular reflections

5.cylinder primitive

6.anti-aliasing

7.area lights

8.optimization: bounding sphere test



ray generation

e same camera model we've seen before

* parameters:
e: eye |location
u: unit vector pointing right
V: unit vector pointing up
WwW: unit vector pointing behind us
rendering window width, height in pixels
field of view angle (in vertical direction)
distance to near plane



ray generation

AN~
/2]

S -




ray generation
(r,-t-.)

N

neav P|ﬁh€.

(2,4)

* image maps to rectangle in near plane
e assume center of rectangle is (0,0)
* Q: what are (l,b) in terms of (r,t)?



ray generation

e

(ﬂlﬂ)P

|

?f jmaée (e9. 4 x3)

e pixel (0,0) is center of lower left pixel

e Q: what are coordinates at corners?



ray generation

e convert pixel coordinates (i,j) to (u,v)
coordinates describing location on near
clipping plane

e e.g. (-¥2, -%2) In pixels maps to (l,b,n)
in eye coordinates
(n = w coordinate of near plane)

 world-space location s is then:
S =e+ uu -+ vv + wn

* Q: what is the ray?



ray generation

* Q: what is the ray?
e A:r(t) = e + t(s - e)



ray generation

* Q:howtogetl rt b, n,f?



ray generation

* Q:howtogetl rt b, n,f?

* A: given n, and fovy
0 = fovy/2

Y e—




ray generation

e tan(d) = t/n
e solve for t




ray generation

e aspect ratio a = image width/height
°* r = a*t

Y e—




shading

//] Returns the color fromthe shadi ng conputation using

[/] the information in the hitinfo t structure

[/l level is the recursion |evel

XVecf RayTracerT::Shade(const hitinfo t& hit, int level) {
XVecf color (0. 0f);

[/ Anbient |ight contribution
color = hit.mmt.mca*hit.mnmat. mcr;

/] YOUR CODE HERE

/| shadi ng code here

/] iterate over the lights and collect their contribution

// make a recursive call to Trace() function to get the reflections

return col or;



shading

//] Returns the color fromthe shadi ng conputation using

[/] the information in the hitinfo t structure

[/l level is the recursion |evel

XVecf RayTracerT::Shade(const hitinfo t& hit, int level) {
XVecf color (0. 0f);

[/ Anbient |ight contribution
color = hit.mmt.mca*hit.mnmat. mcr;

/] YOUR CODE HERE

/| shadi ng code here

/] iterate over the lights and collect their contribution

// make a recursive call to Trace() function to get the reflections

SceneT::LightC::const iterator |i;
for(li=mscene.BeginLights(); li!=mscene. EndLi ghts(); ++li) {

}

return col or;



phong shading

 do per pixel normals

- use barycentric coordinates (provided)

- return interpolated normal within mesh
triangle in MeshT: : I ntersect ()

- If: m shade == PHONG SHADE



specular reflections

* if max recursion not reached, trace a
reflection ray to compute reflected color

e compute illumination seen along reflected
array

e combine with base color using material
specular value



remaining tasks...

- cylinder primitive

- anti-aliasing

- area lights

-+ optimization: bounding sphere test



