

EECS 487
December 6, 2006

● project 5 concepts
● Pat Hanrahan: future of CG?

support code

● not jot
● written by Prof. Guskov
● command line raytracer:

srt scene.sce rendering.tga
● “srt” = simple ray tracer
● scene: lights, camera, objects, ...
● output: targa image (see spec)

tasks

1.ray generation code

2.shading computations

3.interpolated normals for smooth shading

4.specular reflections

5.cylinder primitive

6.anti-aliasing

7.area lights

8.optimization: bounding sphere test

ray generation

● same camera model we've seen before
● parameters:
e: eye location
u: unit vector pointing right
v: unit vector pointing up
w: unit vector pointing behind us
rendering window width, height in pixels
field of view angle (in vertical direction)
distance to near plane

ray generation

ray generation

● image maps to rectangle in near plane
● assume center of rectangle is (0,0)
● Q: what are (l,b) in terms of (r,t)?

ray generation

● say (0,0) is center of lower left pixel
● Q: what are coordinates at corners?

ray generation

● convert pixel coordinates (i,j) to eye coords
(u,v,n) describing location on near clipping
plane (n is coordinate of near plane)

● e.g. (-½, -½) in pixels maps to (l,b,n)
in eye coordinates

● world-space location s is then:
s = e + uu + vv + wn

● Q: what is the ray?

ray generation

● Q: what is the ray?
● A: r(t) = e + t(s - e)

ray generation

● Q: how to get l, r, t, b, n, f?
● e.g. simple.sce:

camera
eyepos 0 -2 1.5 // e
eyedir 0 1 -0.4 // -w
eyeup 0.0 0.0 1.0 // used to find v
wdist 1.0 // distance to near plane
fovy_deg 50 // field of view vertically

ray generation

● Q: how to get l, r, t, b, n, f?
● A: given n = wdist,

and fovy  = fovy/2, find t:

ray generation

● tan() = t/n

● solve for t

ray generation

● aspect ratio a = image width/height
● r = a*t

shading
/// Returns the color from the shading computation using
/// the information in the hitinfo_t structure
/// level is the recursion level
XVecf RayTracerT::Shade(const hitinfo_t& hit, int level) {
 XVecf color(0.0f);

 // Ambient light contribution
 color = hit.m_mat.m_ca*hit.m_mat.m_cr;

 // YOUR CODE HERE
 // shading code here
 // iterate over the lights and collect their contribution
 // make a recursive call to Trace() function to get the reflections

 return color;
}

shading
/// Returns the color from the shading computation using
/// the information in the hitinfo_t structure
/// level is the recursion level
XVecf RayTracerT::Shade(const hitinfo_t& hit, int level) {
 XVecf color(0.0f);

 // Ambient light contribution
 color = hit.m_mat.m_ca*hit.m_mat.m_cr;

 // YOUR CODE HERE
 // shading code here
 // iterate over the lights and collect their contribution
 // make a recursive call to Trace() function to get the reflections

 SceneT::LightCt::const_iterator li;
 for(li=m_scene.BeginLights(); li!=m_scene.EndLights(); ++li) {
 ...
 }
 return color;
}

shading
 SceneT::LightCt::const_iterator li;
 for(li=m_scene.BeginLights(); li!=m_scene.EndLights(); ++li) {
 // send ray to light
 // if hit any object before light, skip the light

 // get surface normal from hit
 // find n dot l
 // do diffuse computation using light color and
 // material diffuse color

 // add specular contribution from light

 // if material specular color is not black,
 // compute color along reflected ray via RayTracerT::Trace()
 }

phong shading

● do per pixel normals
– use barycentric coordinates (provided)
– return interpolated normal within mesh

triangle in MeshT::Intersect()

– if: m_shade == PHONG_SHADE

Cylinder primitive

● To implement any object, just need to
define IGel::Intersect()

● First step: map ray from world space
to object space

● E.g. Sphere (provided in support code):
– Given sphere center c and radius r,

point p is on the sphere if |p – c|2 = r2.

– Point p on the ray: p = e + td

– Substitute in 1st equation, solve for t
via quadratic formula

Cylinder primitive

● In object space the cylinder is “canonical”,
e.g. radius = 1, centered along z-axis,
top at z = 1, bottom at z = 0

● to intersect: first intersect with infinite
cylinder (no top or bottom)

● point p is on the cylinder if |p
xy

|2 = 1.

● Substitute p = e + td, solve for t

Cylinder primitive

● If ray missed, skip (done).
● If 0 <= z <= 1, the ray hit the side (done).
● Else, check if ray hits top or bottom:

– Find intersection with plane
– See if result is inside unit circle

Antialiasing

● Modify RayTracerT::TraceAll():
● Outside of main loop over pixels:

– if (m_opts.m_aasample>0) {

– Create random samples within a generic pixel
– Use jittered sampling (see text)
– Create samples in [0,1]x[0,1] square

representing locations within a pixel
– For each area light:

● Create random samples (similar method)

Antialiasing

● For each pixel:
– if (m_opts.m_aasample>0) {

– For each sample within a pixel
● Create view ray
● Compute color seen along the ray
● Add up, divide by total number of rays

Area lights

● Define area light class in light.h
● Load area lights in loadscene.cpp
● Handle area lights in raytracer.cpp

– For each pixel:
– Before generating rays, shuffle the samples

within each light (see text)
– During loop over pixel samples,

store current sample number in:
RayTracerT::m_current_sample

Area lights

● In RayTracerT::Shade(), when iterating
over lights, pass the current sample
number to each light as a “hint”:

● (*li)->HintSample(m_current_sample);

● It uses the corresponding jittered sample
● Because of shuffling, there is no

correlation of sampling pattern within a
pixel to the sampling pattern within the
light

Bounding sphere test

● In MeshT::ComputeBV(), compute a
bounding volume

● Find average location, max distance to
average location

● Use these as sphere center, radius
● When sphere is created, call ComputeBV

● Use BallT (add member variable to
MeshT class)

Bounding sphere test

● In MeshT::Intersect(), compute the ray in
object space, then before iterating over
mesh triangles, check:

 if(!m_bball.Intersect(ray, hitdummy))
 return false; // skip it!
 // else check every triangle...

My problem

● Method for shuffling samples and passing
around hints seems extra complicated

● At each pixel, we shuffle the samples in
each light...

● Q: What is the point of all this?

My problem

● Q: What is the point of all this?
● A: So we can precompute the samples,

and not have to call the random number
generator too much.

My problem

● Q: But don't you have to call the random
number generator a whole lot of times for
the shuffling?

● A: Well... yes. D00d, I just work here!

My problem

● Q: And how expensive is it exactly to call
the random number generator anyway?

● A: Um... I don't know, I never checked...
● Possible case of premature optimization?

Reasonable alternative

● Don't precompute any jittered samples
● Just compute random samples on the fly

as needed

Pat Hanrahan keynote

● Realistic or Abstract Imagery:
The Future of Computer Graphics?

http://www.graphics.stanford.edu/~hanrahan/talks/realistic-abstract

