Ray tracing

EECS 487 November 20, 2006

Conventional pipeline (rasterization)

- For each triangle
 - Compute lighting at vertices
 - For each pixel within triangle
 - Compute interpolated color and depth
 - Write pixel if depth test passes
- Q: the above description is somewhat "old style"
 - how have things changed lately?

Advantages of conventional pipeline

- Simple
- Can be implemented in HW
 - Parallel processing (SIMD)
 - Vertices
 - Pixels
- Visibility determination is fast
 - z-buffer

Disadvantages

- Missing effects
 - namely?

Disadvantages

- Missing effects
 - Shadows
 - Reflection
 - color bleeding
 - Depth of field
 - Motion blur
 - Aliasing

Refraction, hard shadows, reflection

Soft shadows

Caustics

Motion blur

Ray-casting

- For each *pixel*
 - Compute ray into scene
 - Find intersection with nearest object
 - Compute lighting (via position, normal)

Advantages of ray-casting

• Simple

Advantages of ray-casting

- Simple
- Can be extended to include global illumination effects:
 - Reflections (specular, glossy)
 - Shadows (hard, soft)
 - Depth of field
 - Motion blur
- Then it's called ray-tracing

Disadvantages of ray-tracing

- Done in software: slower
- Adding realism can increase computations exponentially (distribution ray tracing)

Kinds of rays (basic ray tracing)

- Primary ray
 - leaves the eye and travels out to the scene
- When hit spawn three new rave
 - to "collect light"
 - shadow ray
 - towards light
 - reflection ray
 - transparency ray

The ray tree

Raytracing is ...

recursive

• I(incident-out) = I(shadow-local-in)

mariandina

- + Kr * I(reflection-in)
- + Kt * I(transparent-in)

- what is a range of Kr and Kt?
- Without recursion we have

Ray Reflections

$$\theta_{l} = \theta_{r}$$

$$\overrightarrow{R} = \overrightarrow{I} - 2(\overrightarrow{N} \bullet \overrightarrow{I}) \overrightarrow{N}$$

Ray Refraction

Snell's Law

$$\frac{\sin(\theta_i)}{\sin(\theta_t)} = \eta_{21} = \frac{\eta_2}{\eta_1}$$

Index of refraction: ratio of speed of light in a vacuum to speed in the material

Light Attenuation

- Light may lose intensity and shift color
 - effect increases with distance
- Beer's law
 - Fall-off is exponential w/ distance
 - r, g, b components computed separately
 - text has details

http://www.jasonwaltman.com/graphics/rt-soft-fuzzy.html

Watch out for...

- Total internal refraction
 - light may not get through the interface

Computing intersections

- Crucial computation (inner loop)
- Spheres
- Planes
- CSGs

Speed-up techniques

- Bounding volumes
 - Spheres
 - Boxes
- Uniform spatial subdivision
- Hierarchical bounding boxes

Using hierarchical bounding boxes

To check for intersections w/ objects in box:

- if ray misses box, return none
- if box is "leaf" test intersections w/ each triangle stored in the box, return closest
- else check for intersections w/ each child box,
 return closest

Problem (basic ray tracing): images are too clean

http://www.tjhsst.edu/~dhyatt/supercomp/p501.html

What's missing

- Reflections are perfect
- Shadows are hard
- Everything is in focus
- Shutter speed is infinite
- Prone to aliasing
 - Same as conventional pipeline

Strategy: random sampling

Can address all problems listed on previous slide

anti-aliasing

- use many rays per pixel
 - regular sampling
 - random sampling

soft shadows

- one approach: use many lights
 - approximate an area light with dozens of point lights
 - problem: overlapping hard shadows

- alternate approach:
 - sample the area light randomly w/ rays
 - random sampling discussed in text

http://www.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/realistic_raytracing.html

more effects

- glossy reflection
 - follow multiple reflection rays, jittered randomly
- motion blur
 - multiple rays, jittered in time

- depth of field
 - multiple rays, jittered around eye, through focal plane

Wrap up

• Shirley (our textbook) has details on computing random samples effectively

 Project 5 (ray tracing) will go out Monday (after Thanksgiving)