(HAPTER THREE

? lested Iransformations
and Blobby Tl

O C T O B E R

here are a lot of interesting things you can do with transtormation
matrices. Later chapters will deal with this quite a bit, so I will spend
some time here describing my notational scheme for nested transforma-
tions. As a non-trivial example I will include the database for an articulated
human figure called Blobby Man. (Those of you who already know how to
do human articulation, don’t go away. There are some cute tricks here that

are very usetul.)

The Mechanism

his s an implementation of the well-known technique of nested trans-
formations. (Don’t you just hate it when people call something “well
known” and you have never heard of it? It sounds like they are showing oft
how many things they know. Well, admittedly we can’t derive everything
from scratch. But is sure would be nice to find a less smug way of saying so.)
For those for whom this is not so well known, the basic idea behind
nested transformations appears in several places, notably in Foley and van
Dam' and in Glassner.” It is just an organizational scheme to make it easier
to deal with a hierarchy of accumulated transformations. It shows up in
various software systems and has hardware implementations in the E&S
Picture System or the Silicon Graphics IRIS.

1 James D. Foley and Andries van Dam, Fundamentals of Interactive Computer Graphics (Reading, Mass.:
Addison-Wesley, 1984).

2 Andrew S. Glassner, 3D Computer Graphbics: A User's Guide for Artists and Designers (New York: Design Press,
1989).

22

Chapter Three: Nested Transformations and Blobby Man

Briefly, it works like this. We maintain a global 4 x 4 homogeneous
coordinate transformation matrix called the current transfomation, C, con-
taining the transformation from a primitive’s definition space onto a desired
location in screen space. I will assume a device-independent (buzz, buzz) screen
space ranging from -1 to +1 in x and y and where z goes inzo the screen.
This 1s a left-handed coordinate system.

Each time a primitive is drawn, it is implicitly transformed by C. For
example, the transformation of a (homogeneous) point is accomplished
through simple matrix multiplication.

[x: Y, 2, w]m»n — [JC,)’: Zry w]dfﬁc

Other primitives can be transformed by some more complex arithmetic
involving this matrix.

C is typically the product of a perspective transformation and various
rotations, translations, and scales. It is built up with a series of matrix
multiplications by simpler matrices. Fach multiplication premultiplies a new
matrix into C.

CT C

Why in this order? Because a collection of objects, subobjects, sub-
subobjects, etc., is thought of as a tree-like structure. Drawing a picture of
the scene is a top-down traversal of this tree. You encounter the more
global of the transformations first and must multiply them in as you see
them. The transformations will therefore seem to be applied to the primi-
tives in the reverse order to that in which they were multiplied into C.
Another way you can think of it is that the transformations are applied in
the same order stated, but that the coordinate system transtorms along with
the primitive as each elementary transformation is multiplied. At each node
in the tree, of course, you can save and restore the current contents of C on
a stack.

elan?uaif

§ he notational scheme I will use is not just a theoretical construct, it’s
I what T actually use to do all my animations. It admittedly has a few
quirks, but I'm not going to try to sanitize them because T want to be able
to use databases I have actually tried out and to show listings that I know
will work. T have purposely made each operation very elementary to make it
easy to experiment with various combinations of transformations. Most
reasonable graphics systems use something like this, so it shouldn’t be too
hard for you to translate my examples into your own language.

Basic Command et

Instructions for rendering a scene take the form of a list of commands
and their parameters. These will be written here in TYPEWRITER type. All
commands will have four or fewer letters. (The number 4 is used because
of its ancient numerological significance.) Parameters will be separated by
commas, not blanks. (Old-time FORTRAN programmers don’t even see
blanks, let alone use them as delimiters.) Don’t complain, just be glad I'm
not using O-Language (maybe I’ll tell you about that sometime).

Bﬂ f1C (0 mmand 59 {

hese commands modify C and pass primitives through it. Each modifica-
tion command premultiplies some simple matrix into C. No other action
is taken. The command descriptions below will explicitly show the matri-
ces used.

Translation
TRAN X, Vv, Z

premultiplies C by an elementary translation matrix.

1 0 0 0

F

C«

O 1 0 O
O 0 1 O
E AR l__

fcaling

SCAL sx, sy, S5z

premultiplies C by an elementary scaling matrix.

st 0 0 O

0 sy 0 0
C C
10 0 sz 0

0 0 0 1

Rotation

ROT O, 7

23

ek Chapter Three: Nlested Transformations and Blobby Man

The 7 parameter is an integer from 1 to 3 specifying the coordinate axis (x,
vy, or z). The positive rotation direction is given via the Right-Hand Rule (it
you are using a left-handed coordinate system) or the Left-Hand Rule (it
you are using a right-handed coordinate system). 'T'his may sound strange,
but it’s how it’s given in Newman and Sproull.’ It makes positive rotation go
clockwise when viewing in the direction of a coordinate axis. For each matrix
below, we precalculate

s =s1n0
¢ = cosf
The matrices are then
7 =1 (x axis)
1 0 0 0O
C O ¢ -5 0O C
e
O s ¢ 0
_0 0 0 1
7 =2 (y axis)
¢ 0 s O
C 0 1 0 0O C
e
-5 0 ¢ 0
I 0 0 O I
7 =3 (z axis)
¢ —-s 0 0
C 3 C 0 O C
“lo o 1 o0
0o 0 0 1
Perspective

PERS O, z,, Zf

This transformation combines a perspective distortion with a depth (2)
transformation. The perspective assumes the eye is at the origin, looking
down the +z axis. The field of view is given by the angle .

3William M. Newman and Robert E Sproull, Principles of Interactive Computer Graphics (New York: McGraw-
Hill, 1979).

Basic Command §et

The depth transformation is specified by two values—z, (the location
of the near clipping plane) and z; (the location of the far clipping plane).
The matrix transforms z, to +0, and 2, to +1. I know that the traditional
names for these planes are hither and yon, but for some reason I always get
these words mixed up, so I call them near and far:

Precalculate the following quantities (note that far clipping can be
eftectively disabled by setting z; = e, which makes Q = s).

s = s1n(%)
¢ = cos(%)
§
0 =
] - zﬂ/zf
The matrix 1s then
¢ 0 0 0
C 0 ¢ 0 0 C
< 0 0 Q =

00 -Qz, 0

Orientation

]

ORIE a, b, ¢, d, e, f, p, g, r

Sometimes its usetul to specify the rotation (orientation) portion of the
transformation explicitly. There is nothing, though, to enforce it being a
pure rotation, so it can be used for skew transformations.

a d p 0
C« e O C

c f r 0]

0 0 0 1

Transformation $tack

PUSH
POP

These two commands push and pop C on/off the stack.

Z)

26

(hapter Three: flested Transformations and Blobby Man

Primitives

DRAW name

A primitive could be a list of vector endpoints, points-and-polygons, im-

plicit surfaces, cubic patches, blobbies, etc. This command means “pass the

elements in primitive zame (however it’s defined) through C and onto the
Ly

screen.

{1 typical scene will consist of an alternating sequence of C-alteration
T commands and of primitive-drawing commands. At the beginning of
the command list, C is assumed to be initialized to the identity matrix.

Here 1s a typical sequence of commands to draw a view of two cubes
sitting on a grid plane. The primitive GPLANE consists of 2 grid of lines in
the xy plane covering -2 to +2 along each axis, along with some labels and
a tick-marked pole in the +z direction that is placed at y = 2. The primitive
CUBE consists of a cube whose vertices have coordinates =1, =1, *=1]
—that is, it is centered at the origin and has edge length equal to 2. Notice
the scale by ~1 in z to convert from the right-handed system 1n which the
scene 1s defined to the left-handed system in which it is rendered.

L]

PERS 45, 6.2, 11.8
TRAN 0, -1.41, 9
ROT -80, 1

ROT 48, 3

SCAL 1, 1, -1

DRAW GPLAN]

LLl

PUSH

TRAN 0, 0, 1
ROT 20, 3
DRAW CUBE
POP

PUSH

SCAL .3, .4, .5
TRAN -5, -3.8, 1
DRAW CUB:
POP

LL]

The results of executing these instructions appear in Figure 3.1.
Notice that the z, and z¢ variables are selected to bound the scene as
closely as possible so that depth cueing will work. And, hey, it’s called depth

w i

fldvanced (ommands

cuerng, not depth queueing as I've seen some peo-
ple write. (Depth queueing could perhaps be used

to refer to a depth-priority rendering algorithm
... hmmm.)

here are several ways you could perform the
operations described by these lists of com-
mands.

® Translate them into explicit subroutine calls
in some language implementation and com-

pile them. figure3.l Cubes on parade

B Read them through a “filter”-type program that executes the com-

mands as they are encountered. This is the way most of my rendering
programs work.

B Read them into an “editor”-type program that tokenizes the com-
mands into some interpreter data structure and reexecutes the se-

quence upon each frame update. This is the way my animation design
program works.

'I'he simple commands above can be implemented in about two pages of
code. The enhancements below are a little more elaborate. The follow-
Ing constructions make sense only in the “editor” mode of operation.

Parameters

Any numeric parameter can be given a symbolic name. A symbol table will
be maintained and the current numeric value of the symbol used when the
instruction 1s executed. For example, our cube scene could be

PERS FOV, ZN, ZF

TRAN XSCR, YSCR, ZSCR
ROT BACK, 1

ROT SPIN, 3

SCAL 1, 1, -1

DRAW GPLAN]
PUSH

TRAN X1, Y1, z1

L]

2]

28

(hapter Three: Nested Transformations and Blobby Man

ROT ANG, 3
DRAW CUBE
POP

PUSH

SCAL .3, .4, .5
TRAN -5, -3.8, z1
DRAW CUBE
POP

By setting the variables

FOV = 45 ZN = 6.2 ZF = 11.8
XSCR = 0 YSCR = -1.41 ZSCR = 9
BACK = -80 SPIN = 48

X1 =0 Y1 =0 z1 =1
ANG = 20

and executing the command list, the same results would be generated. The
same symbol can appear in more than one place, allowing a certain amount
of constraint satisfaction.

Abbreviations

Each time a subobject is positioned relative to 2 containing object, the
instructions usually look something like

PUSH

various TRAN, ROT, SCAL commands

DRAW primitive
POP

While explicit, the above notation is sometimes a bit spread out and hard to
tollow. This sort of thing happens so often that it’s helpful to define an
abbreviation for it. We do so by following the DRAW command (on the same
line) by the list of transformation commands, separated by commas. An
implied PUSH and POP encloses the transformation list and DRaw. Our cube
scene now looks like

PERS FOV, ZN, ZF
TRAN XSCR, YSCR, ZSCR
ROT BACK, 1

fldvanced (ommands

ROT SPIN, 3

SCAL 1, 1, -1

DRAW GPLANE

DRAW CUBE, TRAN,X1,Y1l,Z1, ROT, ANG, 3

DRAW CUBE, SCAL, .3,.4,.5, TRAN,-5,-3.8,21

fubassembly Definitions

These are essentially subroutines. A subassembly is declared and named by
bracketing its contents by the commands

DEF name

any commands

Once defined, a subassembly can be thought of as just another primi-
tive. In fact, the “designer” of a list of commands should not know or care
if the thing they are drawing is a primitive or a subassembly, so a subassem-
bly is “called” by the same command as a primitive.

DRAW assy _name

The subassembly calling and return process is completely independent of
the matrix stack PUSH and POP process. Interpretation of commands begins
at the built-in name WORLD.

[typically organize my definitions so that WORLD contains only the
viewing transformation, 1.e., its rotations and transformations tell where the
“camera” is and in which direction it is looking. My favorite all-purpose
viewing transform is

DEF WORLD
PERS FOV, ZN, ZF

TRAN XSCR, YSCR, ZSCR

ROT BACK, 1

ROT SPIN, 3

ROT TILT, 1

TRAN -XLOOK, -YLOOK, -ZLOOK
sCAL 1, 1, -1

DRAW SCENE

The variables XL.OOK, YLOOK, and zLOOK determine the “look-at” point.
BACK, SPIN, and TILT tumble the scene about this point. Then XScR,

29

30

(hapter Three: Nlested Transformations and Blobby MMan

YSCR, and ZSCR position the “look-at” point on the screen. XSCR and YSCR
might very well be zero, but ZsCRr needs to be some positive distance to
move the scene away from the eye.

The assembly SCENE contains the contents of the scene and can be
designed independently of how it is being viewed. Our cube scene again:

1

L]

DEF SCEN
DRAW GPLANE
DRAW CUBE, TRAN,X1,Y1l,%Z1, ROT,ANG,3

DRAW CUBE, SCAL, .3,.4,.5, TRAN,-5,-3.38,721

Lt

— s e she—

[} few years ago I made a short animation of a human figure called Blobby
¥1 Man to illustrate a new surface modeling technique.” Leaving aside
issues of modeling, the figure itself is an interesting example of nested
transformations. I have, in fact, used it as a homework assignment for my
computer graphics class. (Gee, I guess I can’t do that any more.)

Blobby Man’ origin is in his stomach, and he stands with the z axis
vertical. The only primitive element is a unit radius SPHERE centered at the
origin. The parameterized variables are all rotation angles. Their usage 1s

defined in Table 3.1.
The wORLD is the standard one given above. SCENE looks like

DEF SCENE
DRAW GPLAN.
DRAW TORSO, TRAN,XM,YM,ZM, ROT,RZM, 3,

L]

‘The actual articulated parts are

DEF TORSO

DRAW LEFTLEG, TRAN,-0.178,0,0,

DRAW RGHTLEG, TRAN,0.178,0,0,

DRAW SPHERE, TRAN,0,0,0.08, SCAL,0.275,0.152,0.153,
DRAW BODY, ROT,EXTEN,1, ROT,BTWIS,Z, ROT,ROT, 3,

4 J. E Blinn, A generalization of algebraic surface drawing, ACM Transactions on Graphics 1(3): 235-256, July
1982.

Blobby Man 3

Table3.1 Meanings of Blobby Man variables

EXTEN Extension. A dancers’ term for bending forwards and
backwards (x axis)

ROT Rotation. A dancers’ term for rotating the body and
shoulders left and right about the vertical () axis

BTWIS Angle of body leaning left and right (y axis)

NOD Head nod

NECK Head shake

LHIP, RHIP Angular direction that the leg is kicked

LOUT, ROUT Angular distance that the leg is kicked

LTWIS, RTWIS Angle the leg 1s twisted about its length

LKNEE , RKNEE Knee bend

LANKL , RANKL Ankle bend

LSID,RSID Arm rotation to side

LSHOU, RSHOU Arm rotation forwards and back

LATWIS, RATWIS Arm rotation about its own length

LELBO, RELBO Elbow angle

DEF BODY

DRAW SPHERE, TRAN,0,0,0.62, SCAL,0.306,0.21,0.5,
DRAW SHOULDER, TRAN,O0,0,1, ROT,EXTEN,1, ROT,BTWIS,2, ROT,ROT, 3,

DEF SHOULDER

DRAW SPHERE, SCAL,0.45,0.153,0.12,

DRAW HEAD, TRAN,0,0,0.153, ROT,NOD,1l, ROT,NECK, 3,

DRAW LEFTARM, TRAN,-0.45,0,0, ROT,LSID,2, ROT,LSHOU,1l, ROT,LATWIS, 3,

L]

: DRAW RGHTARM, TRAN, 0.45,0,0, ROT,RSID,2, ROT,RSHOU,1, ROT,RATWIS, 3,
DEF LEFTLEG DEF RGHTLEG
PUSH PUSH

- ROT LHIP, 3, ROT RHIP, 3,

3 ROT LOUT, 2, ROT ROUT, 2,

3 ROT -LHIP, 3, ROT -RHIP, 3,
ROT LTWIS, 3, ROT RTWIS, 3

f

._—*

(hapter Three: lested Transformations and Blobby Man

DRAW THIGH DRAW THIGH
TRAN 0, 0, -0.85, TRAN 0, 0, -0.85,
ROT LKNEE, 1, ROT RKNEE, 1,
DRAW CALF DRAW CALF

TRAN 0, 0, -0.84, TRAN 0, 0, -0.84,
ROT LANKL, 1 ROT RANKL, 1
DRAW FOOT DRAW FOOT

POP POP

DEF LEFTARM DEF RGHTARM

PUSH PUSH

DRAW UPARM DRAW UPARM

TRAN 0, 0, -0.55, TRAN 0, 0, -0.55,
ROT LELBO, 1, ROT RELBO, 1,
DRAW LOWARM DRAW LOWARM

TRAN 0, 0, -0.5, TRAN 0, 0, -0.5,
DRAW HAND DRAW HAND

POP POP

ke — T l— — e e —

Some primitive body parts are defined as translated and squashed spheres
as follows:

DRAW SPHERE, TRAN,0,0,0.4, SCAL,0.2,0.23,0.3

DRAW SPHERE, TRAN,0,-0.255,0.42, SCAL,0.035,0.075,0.035,
DRAW SPHERE, TRAN,0,0,0.07, SCAL,0.065,0.065,0.14

DRAW SPHERE, TRAN,0,-.162,.239, SCAL, .0533,.0508, .0506,
DEF UPARM

DRAW SPHERE, TRAN,0,0,-0.275, SCAL,0.09,0.09,0.275,

DRAW SPHERE, TRAN,0,0,-0.25, >CAL,0.08,0.08,0.25,
DEF HAND
DRAW SPHERE, TRAN,0,0,-0.116, SCAL,0.052,0.091,0.155,

Blobby Man 33

DEF THIGH
DRAW SPHERE, TRAN,0,0,-0.425, SCAL,0.141,0.141,0.425,

=

DEF CALF
DRAW SPHI
DRAW SPHI

L]
2
L]

SCAL,0.05,0.05,0.05,
TRAN, 0,0,-0.425, SCAL,0.1,0.1,0.425,

Lt
A
L]

DEF FOOT

DRAW SPHERE, SCAL,0.05,0.04,0.04,

DRAW SPHERE, TRAN,0,0.05,-0.05, SCAL,0.04,0.04,0.04,

DRAW SPHERE, TRAN,0,-0.15,-0.05, ROT,-10,1, SCAL,0.08,0.19,0.05,

L4l

1]

L]

—nlile A = S—

A picture of the result appears in Figure 3.2. The
viewing parameters are

ZN = 5.17 ZF = 10.7

XSCR = -.1 YSCR = -1.6 ZSCR = 7.9

BACK = -90 SPIN = =30 TILT = O

XLOOK = 0 YLOOK = 0 ZLOOK = 0O

XM = O YM = 0 ZM = 1.75 o

All other angles are 0.
A picture of the man gesturing is in Figure R

3.3. The view is the same, but the body angles are Figure3.2 Blobby Man

NOD = -25 NECK = 28

RHIP = 105 ROUT = 13 RIWIS = -86 RKNEE = -53

LHIP = 0 LOUT = 0 LTWIS = 0 LKNEE = 0

LSID = -45 LSHOU = 0 LATWIS = -90 LELBO = 90

RSID = 112 RSHOU = 40 RATWIS = -102 RELBO = 85
ﬂ There are several tricks in the model of Blobby Man that are especially
notable.
- (umulative Transformations
It is not necessary to POP a transformation just after it is used to DRAW
f something. Sometimes it is useful to continuously accumulate translations
% and rotations. For example, Blobby Man’ leg could have looked like

-
.I-._
.
%
g v,
e -
[-
. -
-
i
-
R

34 Chapter Three: Nested Transformations and Blobby Man

DEF LLEG

DRAW THIGH

DRAW CALFETC, TRAN,0,0,-0.85,
ROT, LKNEE, 1

L]

DEF CALFETC
) e :_ _"_"_'L':----________%__ DRAW CALF
LT T raw ROOT, TRAN,0,0,-0.84, ROT,LANKL, 1

Fiqure3.3 Blobby Man waving As long as there are no transformed objects after

the last one, some of the nesting can be dispensed
with, leaving . . .

DEF LL:

PUSH

DRAW THIGH

TRAN 0, 0, -0.85

ROT LKNEE, 1

DRAW CALF

TRAN O, 0, -0.84

ROT LANKL, 1

DRAW FOQOT

POP

(3
G2

Repeated Variables

The variables EXTEN, BTWIS, and ROT are used twice, once to flex the BODY
relative to the TORSO and once to flex the SHOULDER relative to the BODY.
This gives a minimal simulation of a flexible spine for the figure.

Rotated Rotations

The transtormation of the (left) leg relative to the torso contains the
sequence

ROT LHIP, 3
ROT LOUT, 2
ROT -LHIP, 3

This 1s something I'm especially proud of. It is a not-completely-obvious
variation of a common technique—using simple transformations to build
rotations or scalings about points other than the origin. For example, if you

fiddendum 35

wanted to rotate a primitive about a point s o
at coordinates (DX, DY), the commands ' '
would be

TRAN DX, DY, O
ROT ANGTI-IZF 3
TRAN -DX, -DY, 0

LOUT=0 LHIP=0 LOUT=-50 LHIP=-60

In other words, you translate the desired
rotation center to the origin, rotate, and Figure3.h Top view of ¥

then translate the center back to where 1t leg rotation A
used to be. (Remember that the transtor- |
mations will be effectively carried out in sequence in the reverse
order from that seen above.) The rotation sequence used for the leg
enables us to rotate the leg about a rotated coordinate axis. The
purpose of this is to make the foot always point forwards, no matter
what LHIP and LoUT are. Figure 3.4 shows how this works. It is a
top view of just the legs and hips, and the dark line shows the axis of
rotation by the angle LOUT. A similar technique could have been
used for the arm-shoulder joints, but I didn’t happen to need that
much flexibility in the animation.

LOUT=-50 LHIFP=-30

S

|
LHIF |

Hdd@-_._

| received a letter from Nelson Max about this chapter. He pointed
out that the rotation trick for making the foot always point for- e

wards does not keep it exactly forwards (with an x component of 0). R
It still has some small sideways component. This is, of course, quite
true. My intention was just to keep it approximately pointing for-
wards (with a negative y component). This works best for the
expected range of values —90 < LouT < 0 and —90 < LHIP < 90. All _
other rotation combinations I tried made it too easy to get the foot o) |
pointing completely backwards, amusing perhaps, but a real nui- LOUT=-50 [LHIP=30 .
sance for animation. v |

.

LOUT=-50 LHIP=6{

