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Vectorization of Raster Images Using 
Polygon Tracing

1. Vector Graphics
There  are  two  main  ways  to  represent  a  two  dimensional  image,  raster  or  vector 
graphics. Most image formats, such as JPG, GIF, BMP, and PNG, are raster graphics, 
also called bitmap graphics, meaning they store the image as a grid of pixels. BMP is the 
simplest of these formats, storing the 24-bit color at each pixel. Other formats like JPG 
and GIF have optimizations to reduce the size of images, but they still  represent the 
image  as  an  array  of  pixels.  This  is  very  useful  for  most  images,  in  particular  for 
photographs. However, raster graphics have some weak points. Most prominently, if a 
raster image is scaled, it becomes blurry and pixelated. For example, here is a picture of 
a circle drawn in MS Paint, and the same circle magnified 10x:

While the small image looks like a circle, the blown up image has jagged edges that 
make it look bad. In this simple example, we could fix the problem by just drawing a 
larger circle in Paint. However, if there are a lot of shapes, or the shapes are not as 
simple  as  circles,  it  could  take  a  lot  of  work  to  reproduce  the  image  at  a  higher 
resolution.

Vector  graphics  are  the  solution to  this  problem.  Instead of  representing images  by 
pixels, vector graphics formats, such as SVG, DXF, SWF, and PS, use parameters to 
represent shapes. A circle, for example, has a center and a radius. Other common vector 
primitives include lines, specified by their endpoints, and Bezier curves, specified by 
their control points. Most vector formats can also store other information, such as stroke 
width, stroke color, and fill color. An obvious advantage of vector graphics is that the 
file size is small. To store a line, for example, the file does not have to store information 
about all the pixels in the line, but rather just two endpoints. The vector format also fixes 



the problem of scaling.  The following is  a small  circle drawn in Inkscape,  a vector 
graphics editor, and the same circle magnified 10x:

The circle still looks good no matter what size it is because the renderer which converts 
the vector image to a bitmap can produce a good-looking circle of any given radius. 
Other  transformations,  such  as  rotations,  can  also  be  performed  on  vector  graphics 
without affecting the quality.

Because vector graphics are easy to manipulate, they are often better than raster images. 
However, vector graphics are only practical for images which can be easily represented 
as  combinations  of  simple  shapes.  In  particular,  vector  graphics  are  not  good  for 
representing photographs or realistic drawings. A common use of vector graphics is for 
diagrams.

Rendering,  the  process  of  converting  from vector  to  raster  graphics  so  they  can  be 
displayed, is simple. The reverse process, called tracing, which takes a raster image and 
converts it to vectors, is not so simple. There are a variety of algorithms to perform this, 
each producing different results, since the vectorized image is just an approximation of 
the original image. After all,  if the vectorized image looked just  like the original,  it 
would be no better than a raster image. The algorithm described here was created by 
Peter Selinger and is called Potrace, short for polygon tracing. Potrace can be found at 
http://potrace.sourceforge.net. Potrace has been integrated with the popular open source 
vector graphics editor Inkscape. Potrace has three main steps: edge detection, polygon 
optimization, and smoothing.

2. Edge Detection
Potrace works on an input of a black and white bitmap image. The images produced by 
Potrace consist of shapes made from Bezier curves. These curves describe the boundary 
of black regions. In order to convert the raster image to such a vector image, then, the 
first step is to figure out which pixels from the original image constitute the borders of 
black regions.

http://potrace.sourceforge.net/


First, an edge is found. An edge is defined to be a border between a white pixel and a 
black pixel. The edge is assigned a direction so that when moving from the first endpoint 
to the second, the black pixel is on the left. Then, a path extension algorithm is used to 
find the next edge in the path.

This picture shows the possible arrangements of pixels and the choice for the next edge 
in each case. In the first three scenarios, it's easy to decide which edge to pick up next to 
form the boundary of the black region. In the last case, it's not so obvious. The direction 
that is chosen in this case can be set by changing a parameter in the input to Potrace.

This process is repeated until we reach the starting point, at which point we have found a 
closed path which encloses a black region. Next, we remove said region from the image, 
because we are done with it. If there is still black left in the image, we continue this 
process.  Finally,  once  all  the  borders  of  the  black  regions  have  been  detected,  any 
sufficiently small regions (determined by an input parameter) are removed, for they are 
most likely artifacts and not part of the actual image.

3. Polygon Optimization
Once the border has been found,  the next  step is  to  approximate the border  with a 
polygon. First, we figure out which border pixels it is possible to connect with a straight 
line such that the line passes through all the border pixels between its endpoints. This 
information is used to compute the set of possible polygons whose vertices have integer 
coordinates and which approximate the border. We only consider those polygons whose 
edges pass through every pixel  of  the border.  The polygon with the fewest  vertices 
which meets this criterion is considered optimal. To decide between polygons of the 
same number of vertices, a mathematical formula is used to compute a value called the 
penalty for  each edge.  Roughly speaking,  the penalty measures the average distance 
from the edge to the pixels it  approximates.  The polygon which minimizes the total 
penalty is the optimal one.

Once the optimal polygon has been found, its vertices are adjusted. Until now, we have 
only considered polygons with integer coordinates. Thus, we have found the optimal 
placement of the vertices to within a distance of ½. The vertices are now moved so as to 
minimize the edge penalty, without straying more than ½ from the original location.



4. Smoothing and Corner Detection
So far,  the algorithm has produced the optimal polygon to  approximate each shape. 
That's not what we're looking for, however. The goal of this process is to produce an 
approximation with Bezier curves. The final step, smoothing, converts a polygon into a 
set of Bezier curves.

Recall that a Bezier curve is a cubic curve defined by four control points. The first and 
fourth control points give the locations of the two endpoints of the curve, while the 
second and third indicate the direction and magnitude of the derivative of the curve at 
each  endpoint.  The smoothing algorithm chooses  the  midpoints  of  the  edges  of  the 
polygon to be the endpoints of the Bezier curves. The second and third control points are 
chosen on the polygon edges through the endpoints, so that each Bezier curve is tangent 
to the polygon at its endpoints. It remains to determine where on the edge these control 
points should go. The distance along the edge toward the vertex of the polygon where 
the two edges meet is given by the parameter α.

A formula is used to compute α. If α < 1, the control point is placed with ratio α along 
the edge. If α > 1, this means that the edges come together at a tight corner, and a Bezier 
curve would not look good at this vertex. Thus, when this happens the vertex is not 
approximated by a Bezier curve, and instead the original polygon edges are used. This is 
called corner detection. It is important to have the correct threshold for corner detection, 
as too few or too many corners in an image cause it to look bad. An example is this letter 
D:

(a) is the original. (b) shows what the result would look like with too low of a threshold. 
The program detects corners where none should exist. (c) shows what it would look like 
with no threshold. The program fails to detect the corners, and thus uses Bezier curves 
instead. (d) shows the optimal result, with the right number of corners.

This  is  the  basic  algorithm  of  Potrace.  There  are  several  optimizations  to  it.  For 
example, at the end of the algorithm, several Bezier curves may be combined into one 
curve if it does not affect the result greatly. There are also algorithms for precomputing 
edge penalties. More information can be found at the Potrace website.
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