Basic Graphics Transforms
-Translation

- Scaling
-Rotation
-Reflection
-Shear

All Can be Expressed As Linear
Functions of the Original Coordinates :

$$
\begin{gathered}
x^{\prime}=A x+B y+C \\
y^{\prime}=D x+E y+F
\end{gathered} \quad\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
A & B & C \\
D & E & F \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Affine \mathcal{T} ransformations
Lecture
3

- Preserve Parallel Lines
- Finite Points Map to Finite Points
- Translation, Rotation, and Reflection Preserve :
- Angles
- Lengths
4 2-D Transformations - Translation $\underset{3}{\text { Lecture }}$

$$
\begin{aligned}
& x^{\prime}=x+T_{x} \\
& y^{\prime}=y+T_{y}
\end{aligned}
$$

Vectors: $\overrightarrow{\mathbf{P}^{\prime}}=\overrightarrow{\mathbf{P}}+\overrightarrow{\mathbf{T}}$
Matrices: $\left[\mathrm{P}^{\prime}\right]=[\mathrm{P}]+[\mathrm{T}]$

$$
\left[\begin{array}{c}
P_{x}^{\prime} \\
P_{y}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
P_{x} \\
P_{y}
\end{array}\right]+\left[\begin{array}{l}
T_{x} \\
T_{y}
\end{array}\right]=\left[\begin{array}{l}
P_{x}+T_{x} \\
P_{y}+T_{y}
\end{array}\right]
$$

Transform Polygons by Transforming Each Vertex

2- D Transformations - Scaling
Lecture
3

$$
\left.\begin{array}{l}
x^{\prime}=S_{x} \cdot x \\
y^{\prime}=S_{y} \cdot y
\end{array} \quad\left[\mathrm{P}^{\prime}\right]=[\mathbf{S}][\mathrm{P}] ~=\begin{array}{c}
P_{x}^{\prime} \\
P_{y}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
S_{x} & 0 \\
0 & S_{y}
\end{array}\right]\left[\begin{array}{c}
P_{x} \\
P_{y}
\end{array}\right]=\left[\begin{array}{l}
S_{x} \cdot P_{x} \\
S_{y} \cdot P_{y}
\end{array}\right] .
$$

Uniform Scaling: $\quad S_{x}=S_{y}$ Differential Scaling: $\quad S_{x} \neq S_{y}$

$$
\begin{gathered}
r \cos \Theta=x \\
r \sin \Theta=y \\
x^{\prime}=r \cos (\Theta+\phi)=r \cos \Theta \cos \phi-r \sin \Theta \sin \phi \\
y^{\prime}=r \sin (\Theta+\phi)=r \cos \Theta \sin \phi+r \sin \Theta \cos \phi
\end{gathered}
$$

Rotation about the Origin

$$
\begin{aligned}
& \begin{array}{l}
x^{\prime}=x \cos \phi-y \sin \phi \\
y^{\prime}=x \sin \phi+y \cos \phi
\end{array} \\
& {\left[\begin{array}{c}
P_{x}^{\prime} \\
P_{y}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{c}
P_{x} \\
P_{y}
\end{array}\right]}
\end{aligned}
$$

Shear Transforms

Lecture
3

Shear: An action or stress resulting from applied forces that causes or tends to causes two contiguous parts of a body to slide relatively to each other.

Shear Transforms
Lecture
3

Properties:
It is an Affine Transform
a and b are the proportionality constant
A Shear Transforms Applications:
Fast and Efficient Rotation
It will be used in Perspective Transformations

Lecture
3

Reflection Transforms

Lecture
3

Reflection is a transform that allows vectors to be flipped about an axis as if reflected in a mirror.

$\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$	$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$	$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$
Reflection About YZ	flection About	Reflection

Transform Combinations
Lecture
3

- Rotation About a Point
- Translate to Origin
- Apply Rotation Matrix
- Translate Back to Original Position
$\left[\mathbf{P}^{\prime}\right]=\left[\mathrm{T}_{2}\right][\mathrm{R}(\phi)]\left[\mathrm{T}_{1}\right][\mathrm{P}]$

 Interactive Computer Graphics

Aliasing and Anti-Aliasing

Aliasing and Anti-Aliasing
Lecture
3

We have a problem with the images we are creating.
They have jagged edges or stair steps.

These effect is call Aliasing. It results from the process of converting an analog signal, the line, into a digital signal.

Aliasing and Anti-Aliasing

Lecture
3

To fully understand the causes of aliasing requires the use of Signal Processing and Fourier Transforms.

We can look at Aliasing from a more intuitive bases.

Aliasing and Anti-Aliasing

Lecture
3

Effects of Sampling

Aliasing

Aliasing and Anti-Aliasing
Lecture
3

Anti-Aliasing is the process that attempts to prevent or fix the problem.

More Resolution
Unweighted Area Sampling
Weighted Area Sampling
Post image creation filtering

Aliasing and Anti-Aliasing
Lecture
3

Unweighted Area Sampling

Aliasing and Anti-Aliasing

Weighted Area Sampling

Pixel

$(1+2+1+2) / 16$

Aliasing and Anti-Aliasing

Weighted Area Sampling

Aliasing and Anti-Aliasing

Lecture
Weighted Area Sampling

Aliasing and Anti-Aliasing
Lecture
3
Weighted Area Sampling

Aliasing and Anti-Aliasing

Weighted Area Sampling

LCD Pixel

Video Pixel

