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Lecture
5Parametric Curves

Goal : Better Approximation of a Curve than Piecewise Linear

• Parametric Curve Segments
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• Cubic Polynomial
• Reasonable Compromise

• Flexibility (without “ringing”)
• Speed of Computation

• Easy Manipulation / Differentiation
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Lecture
5Splines

• Spline Curves
• Defined by a set of Control Points

• All Points on the Curve
• Some Points on the Curve
• No Points on the Curve

• Ease of Interaction Useful in Design

• Interpolate => Control points on curve
• Approximate => Control points not on curve
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Lecture
5Splines

• Spline Representation
• Boundary Conditions
• Basis Matrix
• Blending Functions
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Lecture
5Splines
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• The Combination of the Basis Matrix with the Geometric 
Constraints Give Rise to the Polynomial Coefficients

Linear Interpolation
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• The Combination of the Parametric Matrix with the Basis Matrix
Gives rise to the Blending Functions

Blending Functions
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Splines

• Determine Blending Functions for Splines
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• Spline Curve is a Weighted Sum of Elements in
the Geometry Matrix
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Lecture
5Hermite Splines

• Boundary Conditions are :
• Two Endpoints
• Tangents at Each End
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Lecture
5Hermite Splines
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Lecture
5Bezier Curves

• Developed by Pierre Bezier
• Automobile Design for Renault

• Arbitrary Number of Control Points
• First and Last Control Points Lie ON the Curve
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Lecture
5Bezier Curves

• Given (n+1) Control Points the Bezier Curve is
Determined by :
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Would like the highest order of u to be 3 (u3), so k=3 means n=3

Note: n=3 implies 4 control points
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Lecture
5Bezier Curves

• Given (n+1) Control Points the Bezier Curve is
Determined by :
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Lecture
5Curve Segment Continuity

• Parametric Continuity
• Zero-th Order, Co

Curve segments meet (join point)

• 1st Order, C1

1st Derivatives are equal at join point
• 2nd Order, C2

2nd Derivatives are equal at join point

2Segment for  )0()1(  1Segment PP =

Tangents Equal

C0

C1

C2
Curvature Continuous

• Geometric Continuity
• Zero-th Order, Go

Curve segments meet (join point)
• 1st Order, G1

1st Derivatives are proportional at join point
• 2nd Order, G2

2nd Derivatives are proportional at join point

Parametric Continuity

Geometric Continuity
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Lecture
5Bezier Curves Segments
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• Zero-th Order Continuity Achieved by : 30 PQ =

• C1 Continuity Achieved by :
All Three Points Are Collinear and Equally Spaced

)( 2331 PPPQ −+=

• C2 Continuity Achieved by : )(4 2312 PPPQ −+=

C2 Continuity May Be Too Restrictive Since It Leaves Only Q3 for Adjustment
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Lecture
5Splines

• Blending Functions
• Everywhere non-zero
• ALL control points effect curve
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Lecture
5Splines

• Blending Functions

Hermite

Bezier
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Lecture
5Splines

• B-splines
• Large class of approximating splines

• Uniform, Non-rational
• Non-uniform,Non-rational
• Non-uniform, Rational (NURBS)

• Weighted sums of polynomial basis functions

• Local curve control

• Degree of blending polynomial independent of 
number of control points

• Much more complex
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Lecture
5Bezier Patches

• Parametric Curve Along Two Dimensions
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v

• 16 Control Points
• 4 Corner Points on Curve
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Lecture
5Bezier Patches
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Lecture
5Bezier Patches
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• Tangent / Control Point Relationships
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Lecture
5Bezier Patches

Corner Points
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Tangent Vectors in u
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Lecture
5Bezier Patches

• Continuity Between Patches
• C0 and G0 by using common control points along edge
• G1 when collinear control points with length in equal ratios



















33323130

23222120

13121110

03020100

PPPP

PPPP

PPPP

PPPP



















33323130

23222120

13121110

03020100

QQQQ

QQQQ

QQQQ

QQQQ

0003 QP =
1013 QP =

2023 QP =
3033 QP =

( ) ( )
00010203 QQkPP −=−

( ) ( )
10111213 QQkPP −=−

( ) ( )
20212223 QQkPP −=−

( ) ( )
30313233 QQkPP −=−



11

21

Lecture
5Subdivision Surfaces

• Create smooth surfaces out of arbitrary 
meshes

• The need to generalize spline patch model 
to arbitrary surfaces

• Define a smooth surface as the limit of a 
sequence of successive refinements
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Lecture
5Subdivision Surfaces
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Lecture
5Subdivision Surfaces

Many Attractive Features

• Arbitrary topology

• Scalability LOD

• Uniformity

• Numerical Quality

• Code Simplicity
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Lecture
5Hierachical Modeling

• Construct complex objects from modular subsystems

• Increase storage economy
• Subsytems (instances) stored once
• Transformations matricies stored for each invocation

• Easy object updates
• Update instance
• Chahnges propagated to each use of the instance

• Graphical representation of modeled object
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Lecture
5Hierarchical Modeling

Car

Driver

Rear

Passenger

Rear
Frame HingeHandle Window

Driver Passenger

Front Front

Body SuspensionInterior Engine

ChasisWheelsSeats ConsoleSteering
Wheel

Doors Hood

Wheel

Tire BrakesHubcap
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Lecture
5Hierarchical Modeling

CSG Object

Obj A Obj B

Obj C Obj D Obj E

Operator

Operator

[ ]CM [ ]DM [ ]EM

[ ]BM[ ]AM
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Lecture
5Hierarchical Modeling

Allows the building of complex scenes with a basic set of 3-D primitives

•Each 3-D object can be defined in it’s own, convenient, space.
•Transforms will allow us to assemble the primitives
•These Transforms are nested or hierarchical.
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[ ]

[ ]
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Lecture
5Hierarchical Modeling

Example code:

Procedure Scene()
House(B)
House(D)

end

Procedure House(E)
Prism(E•M)
Cube(E•M)

end

Procedure Cube(F)
…

end

Procedure Prism(F)
…

end
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Lecture
5Hierarchical Modeling

Matrix Stack:

Start with identity 4 x 4

Each transform used is multiplied into the 4 x4

Special commands help manipulate the Matrix

•Push - make a copy of the 4 x 4 and save it

•Pop  - restore the saved copy of the 4 x 4
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Lecture
5Hierarchical Modeling

•First transform should be the viewing Transform
This sets up the camera - all objects get transformed by this

•Push this matrix
•Multiply in B matrix. 
•Draw House
•Pop matrix
•Push this matrix
•Multiply in D matrix
•Draw House
•Pop Matrix 
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Lecture
5Hierarchical Modeling

Draw House:

•Push matrix
•Multiply in M matrix
•Draw Prism
•Pop matrix
•Push matrix
•Multiply in N matrix
•Draw Cube
•Pop matrix
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