
1

1

Lecture
8Scan-Line Algorithm

Scan-Line
sort objects by y, for all y {

sort objects by x, for all x {
compare z

}
}

One of the earliest algorithms for image generation.
1967-1974

This algorithm creates and image by processing the scene data on a line-by-line
basis from the top to the bottom of the frame buffer.

Generally fast because:
1. Visibility decisions can be made in a 2-D subset of the 3-D scene
2. Coherency properties can be used to speed processing

2

Lecture
8Scan-Line Algorithm

• Use a Window that is one scan line high (constant Y
value)
• Polygons intersections can be considered as a
collection of line segments
• Visibility testing is then done on these line segments
• This reduces the 3-D problem to a 2-D problem

Typical Steps

•Sort polygons with one y bucket per scan line

• For all active polygons on this scan line find and sort
the x end points

• On a pixel by pixel basis sort out which line segment
is closest

• Find the color for each pixel

•Move to the next scan line

•Update x end points for all polygons still in y bucket

•Add new x end points for new polygons.

Polygon List

Y-sorted List

X-sorted List
For each scan line

Z – Sort
Depth List

Visible element
determination

2

3

Lecture
8Scan-Line Algorithm

The greatest variation in scan line algorithms
occurs in the z sort or depth list

Worst case, a z-depth list must be generated for
each pixel

If in the x sorted line list none of the objects cross
each other, visibility can be found for large
sections of the scan line.

If in the x sorted list lines do cross each others
span, lists can be generated so that again a large
number of pixels can be handle in one segment.

Polygon List

Y-sorted List

X-sorted List
For each scan line

Z – Sort
Depth List

Visible element
determination

4

Lecture
8Painter’s Algorithm

Painter’s
sort objects by z, for all objects {

for all covered pixels(x,y) {
paint

}
}

Another of the earliest algorithms for image generation.
1969-1972

It can be thought of as painting, or filling, with opaque paint, where closer
objects are painted over farther ones.

This algorithm solves the visible object problem by painting. It is simple but
is not always the most efficient.

3

5

Lecture
8Painter’s Algorithm

Polygon List

Z-sorted list

Subdivide
Mixed Polygons

Z-sort
Sub-Polys

Draw and Paint
Back to Front

•Start by sorting all objects by depth from
front to back.

•Find all objects that have mixed Z.

•Subdivided these objects.

•Resort the sub objects by Z

•Repeat the above three steps until all
object have clean Z values

•Start at the back and draw and fill all
objects into the frame buffer.

6

Lecture
8Painter’s Algorithm

Z sorting is the key to the Painter’s Algorithm.

•Simple and straight forward sort/subdivide.

•Binary-Space-Partitioning (BSP) tree.

•2 1/2 D with a priori valid order (Compositing)

•Particle systems (Very simple to sort)

4

7

Lecture
8

Painter’s Algorithm
BSP

Extremely efficient method for calculating the visibility
relationships among a static group of polygons.

It is a trade off between a time and space intensive preprocessing
step against a linear display step.

Well suited for applications in which the viewpoint changes, but
were the objects do not.

P1

P2P2

f

ff

b

b b

D C A B

D

C

B

A

1

2

3

3,1,2 3,2,1 1,2,3 2,1,3

8

Lecture
8

Painter’s Algorithm
BSP

Example

1

2

3

4

5

5

9

Lecture
8

Painter’s Algorithm
BSP

Example

1

2

3

4

5

3

1
2

1

4

10

Lecture
8

Painter’s Algorithm
BSP

Example

1

2

3

4

5

3

1
2
5a

1

4
5b5a

5b

F B

6

11

Lecture
8

Painter’s Algorithm
BSP

Example

1

2

3

4

5

3

1

4
5b5a

5b

2

5a 1

F B

F B

12

Lecture
8

Painter’s Algorithm
BSP

Example

1

2

3

4

5

3

1

5a

5b

2

5a 1

4

5b

F

F

B

B B

7

13

Lecture
8

Painter’s Algorithm
BSP

Example II

1

2

3

4

5

5

1

2

1

4

3

B

B

B

F

14

Lecture
8Painter’s Algorithm

The “simplest” versions of the painters algorithm must do a
shading calculation for every pixel of every object.

Some shading calculations can be avoided by painting some
selected closest objects and then paint around them for the back
objects.

The above can have serious problems because of requiring global
order which can be very expensive to calculate.

With many Painter’s algorithms aliasing can be a real problem.
Using the alpha channel and compositing can help.

8

15

Lecture
8Painter’s Algorithm

Particle systems lend them selves to the Painter’s Algorithm

Partical systems are made of small dynamic objects that
can be created, extinguished, or moved. They are
generally small and look like points which contain color
and transparency. If they do have shape it can change
with time along with color and material type.

Being small they are easily sorted into fixed bins in
space with little to no chance for z overlap.

Pseudo random location and motion tend to cause
uncorrelated obscurations suitable for antialiased
compositing.

16

Lecture
8Painter’s Algorithm

9

17

Lecture
8Painter’s Algorithm

18

Lecture
8Z-Buffer

Z-Buffer
for all objects {

for all covered pixels {
compare z

}
}

Of all the image rendering algorithms the Z-Buffer or Depth Buffer
is one of the simplest.

For each pixel in the display buffer record the depth value of the
object in the scene. Start with the nearest object in each pixel and
determine the shading values.

This algorithm lends it self to easy anti-aliasing

10

19

Lecture
8Z-Buffer

Polygon List

Project into
screen space

For each pixel
find Z coverage

Shade nearest
polygons

Development of the Z-Buffer is attributed
to Ed Catmull in 1974.

Many additions have been add including

•Alpha buffers

•Jittered Samples

•Weighted averages anti-aliasing

•Bi-cubic patch subdivision

•Depth maps

•Shadows

20

Lecture
8Z-Buffer

Two Papers that are a must for understanding Z-buffer rendering
systems.

“The Reyes Image Rendering Architecture”

“The A-Buffer, an Antialiased Hidden Surface Method”

11

21

Lecture
8Reyes Rendering System

Design Principles:

•Natural Coordinates
•Vectorization
•Common Representation
•Locality

•Geometric
•Texture

•Linearity
•Large Models
•Back Door
•Texture Maps

22

Lecture
8The Alpha Buffer

The Alpha Buffer is
•Antialiased
•Area-averaged
•accumulation Buffer

Resolves visibility of an arbitrary collection of opaque and
transparent surfaces.

Increases image resolution many times over the standard Z-Buffer

12

23

Lecture
8Alpha & Z-Buffer

Intensity Depth Buffer Alpha

24

Lecture
8Alpha

13

25

Lecture
8Compositing Example

26

Lecture
8Compositing Example

14

27

Lecture
8Compositing Example

28

Lecture
8Compositing Example

15

29

Lecture
8Compositing Example

30

Lecture
8Compositing

Important Papers:

“Compositing Digital Images”

“Compositing 3-D Rendered Images

“Compositing - Theory”

“Composting - Practice”

