Introduction to GLSL

EECS 487
January 29, 2006

project 2

start now

note: I'm adding better documentation
to support code today...

read phorum

for GLSL.:

— use Autolab or Cooley

— or your own computer if gfx card is good
— other labs?

homework 1

* Will be posted this afternoon

Next...

* Finish slides from last time,

* then introduce GLSL programming

flow control in jot

GL_VIEW renders scene: geom/gl_view.H

1. clear buffer
2. initialize OGL state (default values)

3. setup lights (see code example in p2.C)
(send light coords to OGL)

4. draw objects

drawing objects

Loop over list of GELs (disp/gel.H)

GEL = “geometric element”

virtual method: GEL::draw()

generic scene object, includes:
— 2D objects like text in window corner
— 3D objects that contain meshes

subclass GEOM contains a mesh

drawing a GEOM

For each GEOM:
send material properties to OGL
send transform to OGL

draw the mesh

BMESH class represents a mesh
(mesh/bmesh.H)

Essentially: vertices, edges, faces

drawing a mesh

BMESH may be divided into patches,
each patch rendered separately

Common case: entire mesh is 1 patch

BIVESH: : dr aw() {
for each patch
draw t he patch

}

Patch class represents a patch
(mesh/patch.H)

drawing a patch

Patch::draw() {
check name of current rendering style
find GTexture with matching name

tell GTexture to draw

}

In modern terms, GTexture is a “shader”
AKA “procedural texture”

“Generalized texture” ... “groovy texture”? something like that...

Why keep a list of GTextures?

« Patch keeps a list of GTextures,
but only uses 1 at any given time

* Reason: GTextures may contain data

— When switching styles, don't want to destroy
data from previous style

— This way, switching styles is lightweight

drawing a GTexture

Details vary per GTexture
Common case:
setup OGL state, e.g.:
enable or disable lighting
enable or disable alpha blending, etc.
draw triangle strips
use StripCB (mesh/stripcb.H)

StripCB

* lets you customize drawing of triangle strips

» while iterating over a triangle strip:

— almost always call glVertex()
— sometimes call gINormal()

— sometimes call glTexCoord()

— sometimes call glColor()

» use StripCB subclass to make whatever
combination of calls is needed

accessing material properties

« Patch is a subclass of APPEAR
(disp/appear.H), which stores all the
material properties.

 you'll need that info in your software shader

Next: GLSL

OpenGL Pipeline

1. vertex processing
— transformations: 3D = 2D
— lighting
2. clipping, primitive assembly
3. fragment processing
— rasterize primitives
— Interpolate colors, texture coordinates, etc.
4. fragment test, etc.
— depth, alpha
— alpha blending

Programmable parts

vertex processing
— transformations: 3D - 2D
— lighting

clipping, primitive assembly

fragment processing
— rasterize primitives
— Interpolate colors, texture coordinates, etc.

fragment test, etc.
— depth, alpha
— alpha blending

Basic idea

Replace vertex or fragment computations
with application-provided programs

— also called shaders
Written in high-level language: GLSL

Graphics driver compiles and links program
at run-time

Application activates the program to replace
fixed-functionality OpenGL pipeline

2 Issues

1. How to write shaders
2. How to activate shaders in OpenGL

our focus: #1

jot handles #2
— nothing deep; read the manual

GLSL: C Basis

« Based on C, with some C++ features

« Graphics-friendly data types:
vec?2, vec3, vecd, mat2, mat3,
mat4, void, bool, float, int,

o structs, 1D arrays, functions, iteration,
if/else

Code snippet

void main() {
const float f = 3.0;
vec3 u(1.0), v(0.0, 1.0, 0.0);
for (int 1=0; 1<10; 1++)
v=1"~T%*uH+ v;

General purpose?

« Seems like general purpose computing.
— Anything missing?

Missing features

No pointers or dynamically allocated memory
No strings, characters

No double, byte, short, long, unsigned...

No file I/0

No printf()

Focus is numerical computation

Other differences

« No automatic type conversion

float £ = 1; // WRONG
float £ = 1.0; // much better

« Simplifies things
 Instead of casting, use constructors:

vec3 v3
vecd v4

vec2 v2
float £

vec3(0.5, 1.0, 0.5);
vec4(v3, 1.0);
vec2(v4d);

float(1l);

Other differences

3 kinds of function parameters:
—-1n (assumed)
-out
—1nout

e NO pointers or references

Graphics-friendly functions

sin, cos, tan, asin, acos, atan,

pow, exp2, log2, sqrt, ..

abs, floor, ceil, mod, min, max, clamp..
mix, step, smoothstep

length, distance, dot, cross, normalize
reflect (!)

more...

Type qualifiers
Variables passed to shaders from the application:

uniform:
— value is constant over primitive (e.g. light direction)

attribute:
— value varies per-vertex (e.g. vertex normal)
— built-in (e.g. gl_Vertex) or application-specific

varying:
— output from a vertex shader
— input to a fragment shader
— (interpolated per-fragment)

Examples: per-pixel lighting

Switch to browser to examine vertex and
fragment shaders provided in project 2
support code:

lighting.vp
lighting.fp

Online resources

http://developer.3dlabs.com/openGL2/
http://www.lighthouse3d.com/opengl/glsl/
http://www.opengl.org/documentation/glsl/

http://developer.3dlabs.com/openGL2/
http://www.lighthouse3d.com/opengl/glsl/
http://www.opengl.org/documentation/glsl/
http://www.opengl.org/documentation/glsl/
http://www.opengl.org/documentation/glsl/

