EECS 487

Non-photorealistic Rendering

continued

Lee Markosian

April 11, 2007

talk overview

- graftals cont'd
- stroke-based rendering
- tonal art maps
- suggestive contours
- dynamic 2D patterns

graftals

- 1st method:
 - generate graftals dynamically
 - use "desire image" to control density
- problem:
 - not very temporally coherent

Art-based Rendering w/ Continuous Levels of Detail. Markosian, Meier, Kowalski, Holden, Northrup, & Hughes. NPAR 2000.

main difference

- graftals not generated dynamically
 - they always exist, but may not be expressed
- new idea: LOD
 - single graftal may appear as 1 tuft,
 or a whole collection
- fade in and out
- much better coherence!

Basic graftals

Collection of drawing primitives

– triangle strips / fans

- plus strokes
- Shared vertices
- Local coordinate frame

• Tuft: hierarchy of graftals

The local frame

- Base position (e.g. on surface)
- y' (e.g. surface normal)

Placement and duplication

- Designer creates a few "example graftals"
- Copies can be generated on surfaces
 - explicitly, or
 - procedurally
- Random variation can be used
 - copies are not exact
 - looks less mechanical

Level of detail (LOD)

- Graftal computes current LOD
- Decides which primitives to draw

Computing LOD

- LOD can be derived from:
 - apparent size
 - orientation
 - elapsed time

σ: ratio of current size to "rest" size

Orientation

Value used to selectively suppress LOD

• E.g.: 1 - |v · n|

Movie

Discussion

- Coherence: much better!
- Slower
- Reavealing / hiding elements
 - fading & thinning work well
 - growing looks creepy
- LOD mechanism too inflexible
- Need direct UI

Pen & Ink: trees

- Deussen and Strothotte, SIGGRAPH 2000
- Problem: temporally coherent pen and ink rendering of trees
- Method:
 - Draw leaf entities w/ controlled size/abstraction
 - Do image processing on depth buffer

no video! :(

talk overview

- graftals cont'd
- stroke-based rendering
- tonal art maps
- suggestive contours
- dynamic 2D patterns

WYSIWYG NPR: Drawing Strokes Directly on 3D Models. Kalnins, Markosian, Meier, Kowalski, Lee, Davidson, Webb, Hughes & Finkelstein. SIGGRAPH 2002.

Contributions

- Direct user-control for NPR
- Better silhouettes
- New media simulation
- Stroke synthesis by example
- Hatching with LODs

Overview of Components

Base Coat

Brush Style

Paper Effect

Decals———

Outlines ____

Hatching

Brush Style

Per stroke:

- Color
- Width
- Paper effect

Rendered as triangle strips.

Strokes in OpenGL

Based on "Skeletal strokes" Hsu *et al.*, UIST '93

Paper Effect

- Height field texture:
- Peaks catch pigment
- Valleys resist pigment

Implementation:

- Pixel shader
- Stroke alpha = pressure

video

talk overview

- graftals cont'd
- stroke-based rendering
- tonal art maps
- suggestive contours
- dynamic 2D patterns

Real-Time Hatching

Emil Praun

Hugues Hoppe

Matthew Webb

Adam Finkelstein

Princeton University

Microsoft Research

Princeton University

Princeton University

Goal

- Stroke-based rendering of 3D models
- Strokes convey:
 - -tone
 - -material
 - -shape

Challenges

Interactive camera and lighting control

Temporal (frame to frame) coherence

Spatial continuity

Artistic freedom

Approach

Tonal Art Maps

- Collection of stroke images
- Will blend → design with high coherence
- Stroke nesting property

$$\leftarrow$$
 tone \rightarrow

Generating Tonal Art Maps

- Draw or import bitmap for one stroke
- Automatically fill TAM with strokes
 - When placing stroke in an image,
 add it to all finer & darker images
 - Fill table column by column, coarse to fine
 - Space strokes evenly

Even Spacing of Strokes

- Choose best stroke from large candidate pool
- Fitness = uniformity & progress towards tone

Texture Blending

Texturing Arbitrary Surfaces

Direction Field

Based on principal curvatures

Optimized to be smooth

- [Hertzmann & Zorin 2000]

- Symmetry: 180º not 90º

video

Summary

- Real-time hatching for NPR
- Strokes rendered as textures
- High coherence TAMs prevent blend artifacts
- 6-way blend very fast on modern graphics

talk overview

- graftals cont'd
- stroke-based rendering
- tonal art maps
- suggestive contours
- dynamic 2D patterns

(see separate slides)

Line drawings via abstracted shading.

Yunjin Lee, Lee Markosian, Seungyong Lee, and John F. Hughes

Conditionally accepted to SIGGRAPH 2007

connection between suggestive contours and shading?

key observation

- suggestive contours show up where shading forms thin, dark bands
- i.e., suggestive contours are an abstraction of shading
 - substitute lines for thin bands of shading

algorithm

- 1 produce tone image, copy to texture memory
- 2 blur the tone image, copy to texture memory
- 3 in fragment shader:
 - output ink on "ridges" and "valleys" of tone
 (think of tone values as a height field)
- 4 use toon shader for base coat
 - conveys broad areas of tone

advantages

- get highlight lines as well as dark lines
- lines depend on lighting
 - they help you visualize the lighting
 - good for combining with toon shading, hatching, etc.
- image space: automatic LOD
- generalization: point light at camera produces suggestive contours

comparison to s.c.

new method (light at camera)

suggestive contours

lighting not at camera

automatic LOD

comparison to real drawings

comparison to real drawings

video

talk overview

- graftals cont'd
- stroke-based rendering
- tonal art maps
- suggestive contours
- dynamic 2D patterns

Dynamic 2D Patterns for Shading 3D Scenes.

Simon Breslav, Karol Szerszen, Lee Markosian Pascal Barla, and Joëlle Thollot.

Conditionally accepted to SIGGRAPH 2007

video

Next up

- No lab Friday
- Monday:
 - course evaluations
 - review for final
 - homework due
- Final exam:
 - -4/20, 4-6 pm
 - CSE 1670