EECS 487

February 14, 2006

- Changli Wang presentation
- SKETCH video
- project 3 concepts
- how to transform a normal vector
- why is n • correct for diffuse shading?

JOT: flat scene graph

basic type for "geometric elements": GEL
"scene graph" is just a list of GELs.
each frame:

$$
\begin{aligned}
& \text { for (int i=0; i<gels.num(); i++) } \\
& \text { gels[i]->draw(); }
\end{aligned}
$$

Derived types

TEXT2D GEOM

TEXT2D: 2D text displayed in the window GEOM: Sub-class of GEL that has a mesh, and a transform

Object space, world space

The transform maps from object space to world space
E.g. a chair model defined near the origin, aligned to major axes (in object space)

To place the chair somewhere in the world, apply a transform to translate, rotate, or scale the shape

GEOM::draw()

GEOM: :draw() \{
push current matrix (save on stack) multiply current matrix by xform draw mesh pop matrix (restore old matrix)

BMESH delegates to Patch...

BMESH: : draw() \{
for each patch p
p->draw();
\}

Patch delegates to GTexture...

Patch::draw() \{
find GTexture g matching the name of the current rendering style
g->draw();
\}
project 2, shaders.H defines GTextures used in project 2

project 3: nested scene graph

Project 3 uses a subclass of GEL called NODE that supports a nested scene graph:

GEL
GEOM
\downarrow
NODE

NODE

Each NODE has:

transform and BMESH (from GEOM) list of children NODES pointer to parent NODE

NODE

For a GEOM, the transform maps from object space to world space

For a NODE, the transform maps from object space to its parent's object space

If A is the parent of B, and B is the parent of C, then object-to-world transform for C is: A.xform() * B.xform() * C.xform()

NODE::draw()

NODE: : draw () \{
push current matrix (saves it) multiply current matrix by xform draw mesh
draw each child // new in NODE pop matrix (restores old matrix)

OpenGL matrix stack

Draw A:
push matrix A on stack
multiply current matrix by A's xform
draw A's triangles
Draw B:
push matrix B on stack multiply current matrix by B's xform draw B's triangles
pop matrix from stack
pop matrix from stack

p3: sketching primitives

- Like SKETCH, small number of primitives
- "cube"
- cylinder
- optional: extrude, duct, ...
- Based on user-drawn axes

Cube primitive

Strokes matching 3 perpendicular axes

The transform for new cube

map origin to p, and canonical axes $\{x, y, z\}$ to $\{a, b, c\}$:
$\mathrm{M}=$ Translate(p) * [a,b,c]

But M maps object space to world space. The new cube exists as a child of its parent, which has its own transform...

Cube transform, cont'd

Let $\mathrm{P}=$ parent's object-to-world transform

Let $M^{\prime}=$ matrix to assign to the cube.

Then: $P * M^{\prime}=M$
so: $M^{\prime}=P^{-1} * M$

Cube transform, cont'd

Q: what about scaling?

Cube transform, cont'd

Q: What about scaling?
A: It's built-in.

Translation: plane constraint

User clicks with middle button, drags

map image-space x and x ' to w and w ' in parent's object space
translation is: w' - w (in parent's obj. space)

Translation: plane constraint

```
Wpt p;
Wvec n;
XYpt x;
Wline R(x);
Wtransf I;
// point in plane (object space)
// plane normal (object space)
// screen point
// ray into scene at x (world space)
// world to parent obj. space xform
// find ray intersection with plane:
Wpt w = Wplane(p,n).intersect(I*R);
```


Translation: line constraint

```
Wpt p;
Wvec n;
XYpt x;
Wline R(x);
Wtransf I;
// point on line (object space)
// line direction (object space)
// screen point
// ray into scene at x (world space)
// world to parent obj. space xform
// find ray intersection with line:
Wpt w = Wline(p,n).intersect(I*R);
```

Q: How to find the intersection of lines in 3D?
Q: How to set transform?

Translation: line constraint

Q: How to set transform?
A: Find w, w' in parent's object space.
Then replace node's transform M with TM (T is the translation from w to w ')

Diffuse shading: hack or physically based?

Why is $\mathrm{n} \cdot \mathrm{I}$ the right number to use for diffuse shading (aka lambertian shading) (board)

Midterm

Midterm is in one week.

Homework 2 is assigned today, due in a week.

Monday: review.
Following week: "spring" break.

