

EECS 487
February 14, 2006

● Changli Wang presentation
● SKETCH video
● project 3 concepts
● how to transform a normal vector
● why is n∙l correct for diffuse shading?

JOT: flat scene graph

basic type for “geometric elements”: GEL

“scene graph” is just a list of GELs.

each frame:
for (int i=0; i<gels.num(); i++)
 gels[i]->draw();

Derived types

 GEL

TEXT2D GEOM

TEXT2D: 2D text displayed in the window

GEOM: Sub-class of GEL that has a mesh,
and a transform

Object space, world space

The transform maps from object space to
world space

E.g. a chair model defined near the origin,
aligned to major axes (in object space)

To place the chair somewhere in the world,
apply a transform to translate, rotate, or
scale the shape

GEOM::draw()

GEOM::draw() {

 push current matrix (save on stack)

 multiply current matrix by xform

 draw mesh

 pop matrix (restore old matrix)

}

BMESH delegates to Patch...

BMESH::draw() {

 for each patch p

 p->draw();

}

Patch delegates to GTexture...

Patch::draw() {

 find GTexture g matching the name
 of the current rendering style

 g->draw();

}

project 2, shaders.H defines
GTextures used in project 2

project 3: nested scene graph

Project 3 uses a subclass of GEL called
NODE that supports a nested scene graph:

 GEL

 GEOM

 NODE

NODE

Each NODE has:

transform and BMESH (from GEOM)

list of children NODES

pointer to parent NODE

NODE

For a GEOM, the transform maps from object
space to world space

For a NODE, the transform maps from object
space to its parent's object space

If A is the parent of B, and B is the parent of
C, then object-to-world transform for C is:
 A.xform() * B.xform() * C.xform()

NODE::draw()

NODE::draw() {

 push current matrix (saves it)

 multiply current matrix by xform

 draw mesh

 draw each child // new in NODE

 pop matrix (restores old matrix)

}

OpenGL matrix stack
Draw A:

 push matrix A on stack

 multiply current matrix by A's xform

 draw A's triangles

 Draw B:

 push matrix B on stack

 multiply current matrix by B's xform

 draw B's triangles

 ...

 pop matrix from stack

 pop matrix from stack

p3: sketching primitives

● Like SKETCH, small number of primitives
– “cube”
– cylinder
– optional: extrude, duct, ...

● Based on user-drawn axes

Cube primitive

 b a

 c

 p

Strokes matching 3 perpendicular axes

The transform for new cube

map origin to p, and
canonical axes {x, y, z} to {a, b, c}:

M = Translate(p) * [a,b,c]

But M maps object space to world space.
The new cube exists as a child of its
parent, which has its own transform...

Cube transform, cont'd

Let P = parent's object-to-world transform

Let M' = matrix to assign to the cube.

Then: P * M' = M

so: M' = P-1 * M

Cube transform, cont'd

Q: what about scaling?

Cube transform, cont'd

Q: What about scaling?

A: It's built-in.

Translation: plane constraint

User clicks with middle button, drags

map image-space x and x' to w and w' in
parent's object space

translation is: w' – w (in parent's obj. space)

x x'

Translation: plane constraint

Wpt p; // point in plane (object space)

Wvec n; // plane normal (object space)

XYpt x; // screen point

Wline R(x); // ray into scene at x (world space)

Wtransf I; // world to parent obj. space xform

// find ray intersection with plane:

Wpt w = Wplane(p,n).intersect(I*R);

Translation: line constraint
Wpt p; // point on line (object space)

Wvec n; // line direction (object space)

XYpt x; // screen point

Wline R(x); // ray into scene at x (world space)

Wtransf I; // world to parent obj. space xform

// find ray intersection with line:

Wpt w = Wline(p,n).intersect(I*R);

Q: How to find the intersection of lines in 3D?

Q: How to set transform?

Translation: line constraint

Q: How to set transform?

A: Find w, w' in parent's object space.
Then replace node's transform M with TM
(T is the translation from w to w')

transforming normals (board)

Diffuse shading:
hack or physically based?

Why is n • l the right number to use for
diffuse shading (aka lambertian shading)
(board)

Midterm

Midterm is in one week.

Homework 2 is assigned today,

due in a week.

Monday: review.

Following week: “spring” break.

