
Precomputed Radiance Transfer:
Theory and Practice

1

Precomputed Radiance Transfer:
Theory and Practice

2

Precomputed Radiance Transfer:
Theory and Practice

Precomputed Radiance Transfer:
Theory and Practice

Peter-Pike Sloan

Microsoft

Jaakko Lehtinen

Helsinki Univ. of Techn.
&

Remedy Entertainment

Jan Kautz

MIT

Precomputed Radiance Transfer:
Theory and Practice

3

Diffuse PRTDiffuse PRT

Jan Kautz

MIT

Precomputed Radiance Transfer:
Theory and Practice

4

Diffuse PRTDiffuse PRT

• Goal: to shade a diffuse object using
Precomputed Radiance Transfer

• Diffuse:
– Reflected light is

view-independent

– Simplifies equations

– [Sloan02]

Precomputed Radiance Transfer:
Theory and Practice

5

() () ()0 1L p d L p d L p d→ = → + → +
r r r

L

Diffuse PRTDiffuse PRT

Start from Neumann expansion and make simplifying assumptions

sdsHspVsLdspfdpL
pNenvr

rrrrrrr
)()()(),()(0 −→→=→ ∫

Ω

sdsHspVsLdspfdpL
pNenvr

rrrrrrr
)()()(),()(0 −→→=→ ∫

Ω

To derive PRT for the diffuse case we are going to start with just the direct term
from the Neumann expansion of the rendering equation and make several
simplifying assumptions.

Precomputed Radiance Transfer:
Theory and Practice

6

() () ()0 1L p d L p d L p d→ = → + → +
r r r

L

Diffuse PRTDiffuse PRT

Diffuse objects: light reflected equally in all directions ⇒ view-independent

sdsHspVsLdspfdpL
pNenvr

rrrrrrr
)()()(),()(0 −→→=→ ∫

Ω

sdsHspVsLdspfdpL
pNenvr

rrrrrrr
)()()(),()(0 −→→=→ ∫

Ω

∫ −→= sdsHspVsLpL
pNenv

d rrrr)()()()(0 π
ρ ∫ −→= sdsHspVsLpL

pNenv
d rrrr)()()()(0 π

ρ

The bottom equation is the “simplified” form. First, for diffuse objects light is
reflected equally in all directions, so outgoing radiance is independent of view
direction.

Precomputed Radiance Transfer:
Theory and Practice

7

∫ −→= sdsHspVsLpL
pNenv

d rrrr)()()()(0 π
ρ ∫ −→= sdsHspVsLpL

pNenv
d rrrr)()()()(0 π

ρ
sdsHspVsLdspfdpL

pNenvr
rrrrrrr

)()()(),()(0 −→→=→ ∫
Ω

sdsHspVsLdspfdpL
pNenvr

rrrrrrr
)()()(),()(0 −→→=→ ∫

Ω

() () ()0 1L p d L p d L p d→ = → + → +
r r r

L

Diffuse PRTDiffuse PRT

Diffuse objects: BRDF is a constant

This also means the BRDF is just a constant (and independent of direction) so it
can be pulled out of the integral. Rho_d represents the diffuse reflectivity of the
surface, and is a number between 0 and 1. The divide by Pi enforces energy
conservation.

Precomputed Radiance Transfer:
Theory and Practice

8

∫ −→= sdsHspVsLpL
pNenv

d rrrr)()()()(0 π
ρ ∫ −→= sdsHspVsLpL

pNenv
d rrrr)()()()(0 π

ρ
sdsHspVsLdspfdpL

pNenvr
rrrrrrr

)()()(),()(0 −→→=→ ∫
Ω

sdsHspVsLdspfdpL
pNenvr

rrrrrrr
)()()(),()(0 −→→=→ ∫

Ω

() () ()0 1L p d L p d L p d→ = → + → +
r r r

L

Diffuse PRTDiffuse PRT

Assume: lighting comes from infinity, independent of p

As before, we assume the source radiance function is at infinity, this means we only
need to concern ourselves with the direction s.

Precomputed Radiance Transfer:
Theory and Practice

9

Diffuse PRTDiffuse PRT

• Visually:

∫ −→= sdsHspVsLpL
pNenv

d rrrr)()()()(0 π
ρ
∫ −→= sdsHspVsLpL

pNenv
d rrrr)()()()(0 π

ρ

Incident Light Visibility Cosine

Reflected Light

Precomputed Radiance Transfer:
Theory and Practice

10

VisuallyVisually

Incident Light

Visibility

Cosine

Integrand

Visually, we integrate the product of three functions (light, visibility, and cosine).

Precomputed Radiance Transfer:
Theory and Practice

11

VisuallyVisually

Incident Light

Visibility

Cosine

Integrand∫∫
PrecomputePrecompute

The main trick we are going to use for precomputed radiance transfer (PRT) is to
combine the visibility and the cosine into one function (cosine-weighted visibility or
transfer function), which we integrate against the lighting.

Precomputed Radiance Transfer:
Theory and Practice

12

ProblemsProblems

• Problems remain:

– How to encode the spherical functions?

– How to quickly integrate over the sphere?

This is not useful per se. We still need to encode the two spherical functions
(lighting, cosine-weighted visibility/transfer function). Furthermore, we need to
perform the integration of the product of the two functions quickly.

Precomputed Radiance Transfer:
Theory and Practice

13

∑≈
i

iienv sylsL)()(rr ∑≈
i

iienv sylsL)()(rr
∫ −→= sdsHspVsLpL

pNenv
d rrrr)()()()(0 π

ρ ∫ −→= sdsHspVsLpL
pNenv

d rrrr)()()()(0 π
ρ

Diffuse PRTDiffuse PRT

Represent lighting using basis function yi()

Now we are going to approximate the source radiance function with its projection
into a set of basis functions on the sphere (denoted yi() in this equation.) The l_i are
the projection coefficients of a particular lighting environment. For didactic
purposes we are using piecewise constant basis functions.

Precomputed Radiance Transfer:
Theory and Practice

14

Diffuse PRTDiffuse PRT

Plug into equation. Since it's linear, we can move sum outside integral.

Everything within the integral can be precomputed.

∫ ∑
Ω

−→⎟
⎠

⎞
⎜
⎝

⎛
= sdsHspVsylpL

pN
i

ii
d rrrr)()()()(0 π

ρ ∫ ∑
Ω

−→⎟
⎠

⎞
⎜
⎝

⎛
= sdsHspVsylpL

pN
i

ii
d rrrr)()()()(0 π

ρ

∫∑
Ω

−→= sdsHspVsylpL
pNi

i
i

d rrrr)()()()(0 π
ρ ∫∑

Ω

−→= sdsHspVsylpL
pNi

i
i

d rrrr)()()()(0 π
ρ

)(sLenv
r)(sLenv
r

We can plug this approximation directly into the reflected radiance equation.

Manipulating this expression exploiting the fact that integration is a linear operator
(sum of integrals = integral of sums), we can generate the following equivalent
expression.

The important thing to note about the highlighted integral is that it is independent of
the actual lighting environment being used, so it can be precomputed.

Precomputed Radiance Transfer:
Theory and Practice

15

Diffuse PRTDiffuse PRT

We call the precomputed integrals transfer coefficients

Outgoing radiance: just a dot-product!

∫∑
Ω

−→= sdsHspVsylpL
pNi

i
i

d rrrr)()()()(0 π
ρ ∫∑

Ω

−→= sdsHspVsylpL
pNi

i
i

d rrrr)()()()(0 π
ρ

() 0
0 i pi

i
L p l t=∑

() 0
0

d
i pi

i

L p l tρ
π

= ∑

This integral represents a transfer coefficient – it maps how direct lighting in basis
function I becomes outgoing radiance at point p. The set of transfer coefficients is a
transfer vector that maps lighting into outgoing radiance.

We can optionally fold the diffuse reflectivity into the transfer vector as well.

Precomputed Radiance Transfer:
Theory and Practice

16

() i pi
i

L p l t=∑

() ()0 1
i pi pi

i
L p l t t= + +∑ L

Diffuse PRTDiffuse PRT

() () ()0 1L p d L p d L p d→ = → + → +
r r r

L

We do this for every bounce and fold everything into a final transfer vector

A similar process can be used to model the other bounces, so that a final vector can
be computed and used to map source radiance to outgoing radiance at every point
on the object.

Outgoing radiance is then just the dot product of the lights projection coefficients
with the transfer vector.

Precomputed Radiance Transfer:
Theory and Practice

17

Diffuse PRTDiffuse PRT

•• = =

Project lighting

Lookup ptpt

Rotate light

Compute integral

per
object

per
pixel/vertex= = * *

∫ −⋅→= sdsnspVsLpL env
rrrrr)0,max()()()(∫ −⋅→= sdsnspVsLpL env
rrrrr)0,max()()()(

This shows the rendering process.

We project the lighting into the basis (integral against basis functions). If the object
is rotated wrt. to the lighting, we need to apply the inverse rotation to the lighting
vector (in case of SH, use rotation matrix).

At run-time, we need to lookup the transfer vector at every pixel (or vertex,
depending on implementation). A (vertex/pixel)-shader then computes the dot-
product between the coefficient vectors. The result of this computation is the
outgoing radiance at that point.

Precomputed Radiance Transfer:
Theory and Practice

18

PRT Results (using SH)PRT Results (using SH)

Unshadowed Shadowed (PRT)

On the left, you can see results down with previous techniques (no shadowing), and
on the right using Precomputed Radiance Transfer.

Precomputed Radiance Transfer:
Theory and Practice

19

PRT Results (using SH)PRT Results (using SH)

Unshadowed Shadowed (PRT)

Precomputed Radiance Transfer:
Theory and Practice

20

PRT Results (using SH)PRT Results (using SH)

Unshadowed Shadowed (PRT)

Precomputed Radiance Transfer:
Theory and Practice

21

Demos

Precomputed Radiance Transfer:
Theory and Practice

22

• Reminder:

• Need lighting coefficient vector:

• Compute every frame (if lighting changes)

• Projection can e.g. be done using Monte-
Carlo integration, or on GPU

RenderingRendering

∫= sdsysLL ienvi
rrr)()(∫= sdsysLL ienvi
rrr)()(

∑=
n

i
ipi tlpL ,)(∑=

n

i
ipi tlpL ,)(

Rendering is just the dot-product between the coefficient vectors of the light and the
transfer.

The lighting coefficient vector is computed as the integral of the lighting against the
basis functions (see slides about transfer coefficient computation).

Precomputed Radiance Transfer:
Theory and Practice

23

RenderingRendering

• Work that has to be done per-vertex is easy:

• Only shadows: independent of color
channels ⇒ single transfer vector

• Interreflections: color bleeding ⇒ 3 vectors

// No color bleeding, i.e. transfer vector is valid for all 3 channels

for(j=0; j<numberVertices; ++j) { // for each vertex
for(i=0; i<numberCoeff; ++i) {
vertex[j].red += Tcoeff[i] * lightingR[i]; // multiply transfer
vertex[j].green += Tcoeff[i] * lightingG[i]; // coefficients with
vertex[j].blue += Tcoeff[i] * lightingB[i]; // lighting coeffs.

}
}

Sofar, the transfer coefficient could be single-channel only (given that the 3-channel
albedo is multiplied onto the result later on). If there are interreflections, color
bleeding will happen and the albedo cannot be factored outside the precomputation.
This makes 3-channel transfer vectors necessary, see next slide.

Precomputed Radiance Transfer:
Theory and Practice

24

RenderingRendering

• In case of interreflections (and color
bleeding):

// Color bleeding, need 3 transfer vectors

for(j=0; j<numberVertices; ++j) { // for each vertex
for(i=0; i<numberCoeff; ++i) {
vertex[j].red += TcoeffR[i] * lightingR[i]; // multiply transfer
vertex[j].green += TcoeffG[i] * lightingG[i]; // coefficients with
vertex[j].blue += TcoeffB[i] * lightingB[i]; // lighting coeffs.

}
}

Precomputed Radiance Transfer:
Theory and Practice

25

PrecomputationPrecomputation

• Integral

evaluated numerically with e.g. ray-tracing:

• Directions need to be uniformly
distributed (e.g. random)

• Visibility is determined with ray-tracing

∫ −⋅→= sdsysnspVt ipip
rrrrr)()0,max()(0

, π
ρ
∫ −⋅→= sdsysnspVt ipip

rrrrr)()0,max()(0
, π

ρ

∑
−

=

−⋅→=
1

0

0
,)()0,max()(4 N

j
jijpjip sysnspV

N
t rrrr

π
ρπ ∑

−

=

−⋅→=
1

0

0
,)()0,max()(4 N

j
jijpjip sysnspV

N
t rrrr

π
ρπ

jsrjsr

VV

The main question is how to evaluate the integral. We will evaluate it numerically
using Monte-Carlo integration. This basically means, that we generate a random
(and uniform) set of directions s_j, which we use to sample the integrand. All the
contributions are then summed up and weighted by 4*pi/(#samples).

The visibility V(p->s) needs to be computed at every point. The easiest way to do
this, is to use ray-tracing.

Aisde: uniform random directions can be generated the following way.
1) Generate random points in the 2D unit square (x,y)
2) These are mapped onto the sphere with:

theta = 2 arccos(sqrt(1-x))
phi = 2y*pi

Precomputed Radiance Transfer:
Theory and Practice

26

Basis 16Basis 16

Basis 17Basis 17

Basis 18Basis 18

illuminateilluminate resultresult

......

......

Precomputation – VisuallyPrecomputation – Visually

Visual explanation 2):

This slide illustrates the precomputation for direct lighting. Each image on the right
is generated by placing the head model into a lighting environment that simply
consists of the corresponding basis function (SH basis in this case illustrated on the
left.) This just requires rendering software that can deal with negative lights.

The result is a spatially varying set of transfer coefficients shown on the right.

To reconstruct reflected radiance just compute a linear combination of the transfer
coefficient images scaled by the corresponding coefficient for the lighting
environment.

Precomputed Radiance Transfer:
Theory and Practice

27

Precomputation – CodePrecomputation – Code
// p: current vertex/pixel position
// normal: normal at current position
// sample[j]: sample direction #j (uniformly distributed)
// sample[j].dir: direction
// sample[j].SHcoeff[i]: SH coefficient for basis #i and dir #j

for(j=0; j<numberSamples; ++j) {
double csn = dotProduct(sample[j].dir, normal);
if(csn > 0.0f) {
if(!selfShadow(p, sample[j].dir)) { // are we self-shadowing?
for(i=0; i<numberCoeff; ++i) {
value = csn * sample[j].SHcoeff[i]; // multiply with SH coeff.
result[i] += albedo * value; // and albedo

}
}

}
}
const double factor = 4.0*PI / numberSamples; // ds (for uniform dirs)
for(i=0; i<numberCoeff; ++i)

Tcoeff[i] = result[i] * factor; // resulting transfer vec.

Pseudo-code for the precomputation.

The function selfShadow(p, sample[j].dir) traces a ray from position p in direction
sample[j].dir. It returns true if there it hits the object, and false otherwise.

Precomputed Radiance Transfer:
Theory and Practice

28

Precomputation –
Interreflections
Precomputation –
Interreflections
• Light can interreflect from positions ontoqq

Object

qq pp

pp

qsrqsr

psrpsr
direct

indirect

qsrqsr

Not only shadows can be included into PRT, but also interreflections.

Light arriving at a point q can be subsequently scattered onto a point p. I.e. light
arriving from s_q can arrive at p, although there is may be no direct path (along s_q)
to p (as in this example).

Note, that light is arriving from infinity, so both shown direction s_q originate from
the same point in infinity.

Precomputed Radiance Transfer:
Theory and Practice

29

Precomputation –
Interreflections
Precomputation –
Interreflections

• Light can interreflect from positions , where
there is self-shadowing:

∫
Ω

⋅−→−⋅= sdnssPVsqLpL p
rrrrr)0,max())(1())(()(01 π

ρ
∫
Ω

⋅−→−⋅= sdnssPVsqLpL p
rrrrr)0,max())(1())(()(01 π

ρ

qq

light leaving from
towards inverse visibility cosine

)(sq r)(sq r

pp

pp)(sq r)(sq r

)(sq r)(sq r
)(sq r)(sq r

)(sq r)(sq r)(sq r)(sq r

More formally, we do not only have direct illumination L_0, but also light arriving
from directions s, where there is self-shadowing (i.e. 1-V(P->s)). The light arrives
from positions q, which are the first hit along s.

Precomputed Radiance Transfer:
Theory and Practice

30

Precomputation –
Interreflections
Precomputation –
Interreflections

• Precomputation of transfer vector has to be
changed

• An additional bounce b is computed with

where is from the pure shadow pass

• Final transfer vector:

∫ −⋅→−= − sdsnspVtt p
b

iq
b

ip
rrrr)0,max())(1(1

,, π
ρ
∫ −⋅→−= − sdsnspVtt p

b
iq

b
ip

rrrr)0,max())(1(1
,, π

ρ

0
,ipt

0
,ipt

∑
−

=

=
1

0
,,

B

b

b
ipip tt ∑

−

=

=
1

0
,,

B

b

b
ipip tt

To account for interreflections, the precomputation has to be changed again.

Each additional bounce b generates a vector T^b_p = [t^b_{p,0}, …], which is
computed as shown on the slide. Each of these additional transfer vectors is for a
certain bounce.

To get the final transfer vector, they have to be added. Again, the run-time remains
the same!

Precomputed Radiance Transfer:
Theory and Practice

31

Interreflections (using SH)Interreflections (using SH)

No Shadows/Inter Shadows No Shadows/Inter Shadows Shadows+InterShadows+Inter

This set of images shows the buddha model lit in the same lighting environment,
without shadows, with shadows and with shadows and inter reflections.

Precomputed Radiance Transfer:
Theory and Practice

32

Choice of Basis FunctionsChoice of Basis Functions

• Criteria
– Want few coefficients, good quality

– No flickering

– People have used:
• Spherical Harmonics

• Haar Wavelets

• Steerable basis functions

Precomputed Radiance Transfer:
Theory and Practice

33

PRT Quality – SH basisPRT Quality – SH basis

20°20°

40°40°

0°0°

n=2n=2
linearlinear

n=3n=3
quadraticquadratic

n=4n=4
cubiccubic

n=5n=5
quarticquartic

n=6n=6
quinticquintic

n=26n=26 n=26n=26
windowedwindowed

RTRT

Quality of SH solution.
0 degree (point light) source, 20 degree light source, 40 degree light-source.
Light is blocked by a blocker casting a shadow onto the receiver plane. Different
order of SH is shown (order^2 = number of basis functions). Very right: exact
solution.
As stated before, lighting is assumed low-frequency, i.e. point light doesn't work
well, but large area lights do!

Precomputed Radiance Transfer:
Theory and Practice

34

PRT with Haar WaveletsPRT with Haar Wavelets
• Main difference to SH:

– Haar needs to precompute
and keep all lighting/
transfer coefficients!

– Decide depending on
lighting, which ones to use!
(see right)

– Implies (compressed)
storage of all transport
coefficients (64*64*6)

– Not well-suited to hardware
rendering

Courtesy Courtesy
RenRen NgNg

As shown in the comparison on the right, with more coefficients, wavelets do much
better represent the lighting than the SH (which show a lot of ringing artifacts).

There are a few differences when using Haar instead of SH:
1) All transfer coefficients need to be computed and stored!
2) Because which of the actual N coefficients are used, is decided at run-time

based on the lighting's most important N coefficients (N=100 seems sufficient).
3) This requires all transfer coefficients to be stored as well (can be compressed

well, like lossy wavelet compressed images).
4) Since the coefficients to be used change at run-time, this is not well-suited to a

GPU implementation (but works great on a CPU)

Precomputed Radiance Transfer:
Theory and Practice

35

ConclusionsConclusions

Pros:

• Fast, arbitrary dynamic lighting

• PRT: includes shadows and interreflections

Cons:

• Simple implementation works well only for
low-frequency lighting
– High-frequency shadows need Wavelets +

compression to make it fast!

Precomputed Radiance Transfer:
Theory and Practice

36

Diffuse PRTDiffuse PRT

• Questions?

Precomputed Radiance Transfer:
Theory and Practice

37

