

Radiosity
EECS 487
March 26, 2007

Recap of ray tracing

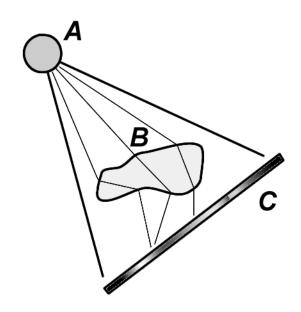
- what effects are hard for ray tracing?
- why?

Recap of ray tracing

• why are caustics hard?

Recap of ray tracing

- why are caustics hard?
- need to trace paths from light sources to eye
- ray tracing traces from eye
 "backwards"
 out into the scene



Degrees of ray tracing

- ray casting
- ray tracing
- monte carlo ray tracing
- what effects can they achieve?

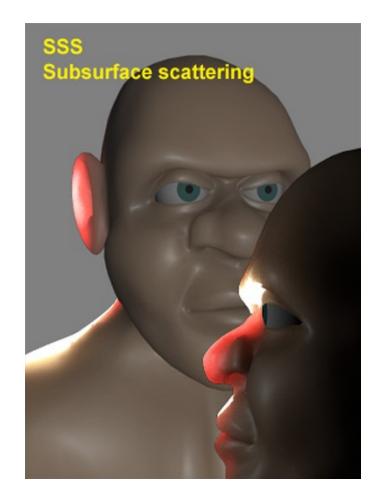
Effects achieved by types of ray tracing

- ray casting
 - local illumination (same as OpenGL)
- ray tracing
 - mirrored surfaces
 - hard shadows
 - refraction (e.g. through glass, water)

Effects achieved by types of ray tracing

- monte carlo ray tracing
 - antialiasing
 - depth of field
 - motion blur
 - soft shadows
 - glossy reflection
 - subsurface scattering
 - color bleeding?
 - caustics?

Subsurface Scattering

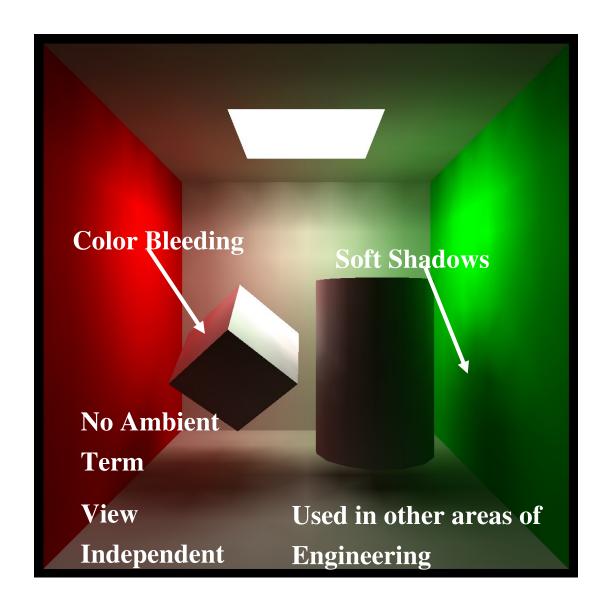


http://features.cgsociety.org/story_custom.php?story_id=2420&page=4

Easy vs. hard

- easy effects need relatively few rays
- hard effects need many rays
- light transport in a hall of mirrors is easy for ray tracing
- much harder for a scene made of diffuse surfaces
- radiosity simulates diffuse light transport
- does not handle specularities

Radiosity for Inter-object Diffuse Reflection



Comparison to photographs



Reality (actual photograph)...

Comparison to photographs

Minus Radiosity Rendering...

Comparison to photographs

Equals the difference (or error) image

Mostly due to mis-calibration

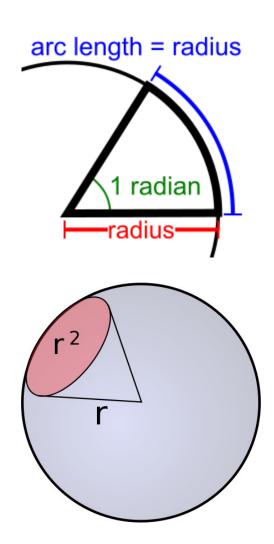
Radiosity: overview

- scene represented as many small "patches"
- each patch has a luminance value
 - initially 0 (black)
 - except for light sources
- iteratively simulate light flow between patches to finalize stable values of this luminance
- result is view-independent
 - like a texture map for entire scene!

- *Power*: energy flow per unit time
- Energy Flux: Energy per unit area per unit time
 - Power per unit area
- *Irradiance*: Total power per unit area incident at a spot
- *Radiant Exitance*: Total power per unit area reflected from a spot

- *Radiance*: Irradiance contribution from a particular incident angle (direction) through a differential solid angle
- Surface Radiance: Exiting radiance (exitance)
- Field Radiance: Incident radiance

- *Radian*: Angle subtended at center when arc length = radius
- Steradian: Solid angle subtended at center when surface portion area is r^2
 - Contour can have any shape



- *Radiosity*: rate at which energy leaves surface
 - Same as Radiant Exitance
- equal to sum of emitted and reflected light
- reflected light depends on:
 - all incoming light
 - surface BRDF
- similar problems in thermal engineering

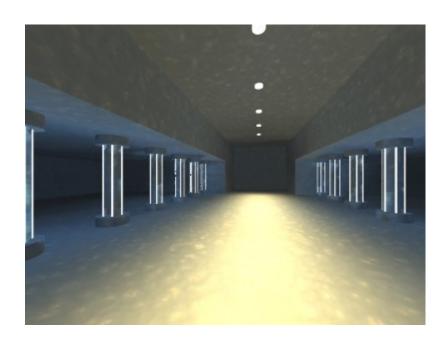
- BRDF: Bidirectional Reflectance Distrib Fn
 - For each incident direction, \mathbf{k}_{i}
 - for each reflected direction, **k**_o
 - what fraction of the incident power is reflected in a differential solid angle around the reflected direction

radiosity example

Radiosity - Significance

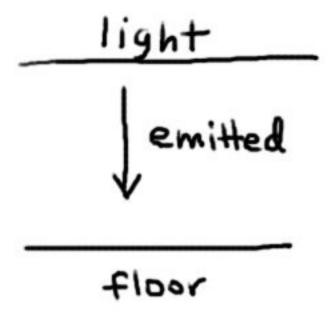
Without radiosity

With radiosity

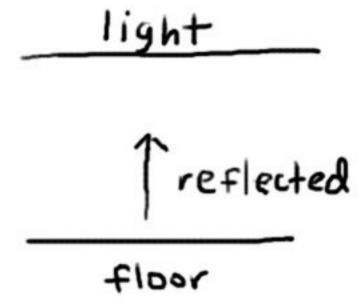


http://bisqwit.iki.fi/kala/povray/radiosity/

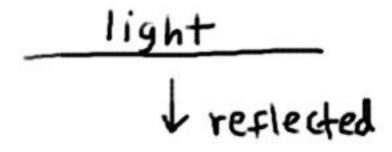
- two patches
- fluorescent light in ceiling
- floor



- two patches
- fluorescent light in ceiling
- floor



- two patches
- fluorescent light in ceiling
- floor



floor

- two patches
- fluorescent light in ceiling
- floor
- less light with each reflection

convergence?

• what do we need for convergence?

convergence?

- what do we need for convergence?
- reflected light should always be less than incoming light
- i.e., absorption is always > 0

Kajiya's Rendering Equation

- the "rendering equation" formulated by Jim Kajiya in 1986
- tells how much light energy leaves patch j in a particular direction (to k)
- depends on:
 - light emitted from j (toward k)
 - light arriving at j from whole scene,
 reflected toward k

Kajiya's Rendering Equation

$$L(j \rightarrow k) = L_e(j \rightarrow k) + \int_i L(i \rightarrow j) g(i \rightarrow j) f(i \rightarrow j \rightarrow k)$$

- f is the BRDF of surface at j
 - tells how light arriving at j from all directions
 is reflected toward k
- g is a "geometry" function
 - tells how much light leaving i towards j arrives
 without being blocked by an occluder

rendering a scene

- a scene has:
 - geometry
 - light sources
 - camera parameters
- must compute light arriving at camera from all angles, taking into account multiple bounces off geometry

Recap - rendering a scene

- a scene has:
 - geometry
 - light sources
 - camera parameters
- must compute light arriving at camera from all angles, taking into account multiple bounces off geometry
- too hard

approximations

- ray tracing:
 - small number of rays (relatively)
 - mainly handle specular reflection
 - ignore inter-object diffuse reflections
- radiosity
 - handle only diffuse reflection
 - result is view-independent(ignores all view-dependent effects)

radiosity: which effects are supported?

- depth of field
- motion blur
- soft shadows
- glossy reflection
- subsurface scattering
- color bleeding
- caustics

radiosity: which effects are supported?

- depth of field
- motion blur
- soft shadows
- glossy reflection
- subsurface scattering
- color bleeding
- caustics

important symbols

- *i*: patch index
- B_i : total light leaving patch i
- E_i : amount of light emitted from patch i
- G_{ji} : fraction of light emitted by patch j that is received by patch i
 - depends on distance, orientation, occlusion
- R_i : fraction of incoming light that is reflected

how are these terms related?

- total light leaving patch *i* equals
 - light emitted from i, plus
 - fraction of incoming light at patch i that is reflected

how are these terms related?

$$B_{i} = E_{i} + R_{i} \sum_{j} G_{ij} B_{j}$$

In matrix notation:

$$\vec{B} = \vec{E} + M\vec{B}$$

Q: What do the terms mean?

Q: Which are "known" and which are unknown?

Q: Where is the BRDF?

meaning of the terms

- $\vec{\mathbf{B}}$: vector of radiosity values (1 per patch). Unknown.
- **E** : vector of emissive values (1 per patch) Known.
- M: matrix that encodes R_i and G_{ij} values; relates how light leaving all the patches is transported to other patches and reflected. "Known."

The unknown \vec{B} occurs twice in the equation! Impossible to solve!!

$$\vec{B} = \vec{E} + M\vec{B}$$

class over

- sorry, radiosity is impossible to compute.
- sigh.

Oh wait....

$$\vec{B} = \vec{E} + M\vec{B}$$

$$\Rightarrow \vec{\mathbf{B}} - \mathbf{M} \vec{\mathbf{B}} = \vec{\mathbf{E}}$$

$$\Rightarrow (I-M)\vec{B} = \vec{E}$$

$$\Rightarrow \vec{\mathbf{B}} = (\mathbf{I} - \mathbf{M})^{-1} \vec{\mathbf{E}}$$

- That's the formal solution
- Q: practical problems in implementing?

- That's the formal solution
- Q: practical problems in implementing?
 - matrix M is n x n, where n is number of patches (large!)
 - inverting matrix is impractical
 - instead use numerical methods to solve
 - e.g. Gaussian elimination

- can solve via iteration using "intuitive" method
- recall geometric series:

$$I + M + M^2 + ... + M^{k-1} = S$$

$$\mathbf{M} \times (\bullet)$$
 $\mathbf{M} + \mathbf{M}^2 + \mathbf{M}^3 + \dots + \mathbf{M}^k = \mathbf{MS}$

Subtract
$$I-M^k=(I-M)S$$

• Assume $M^k \rightarrow 0$ (why?)

$$I-M^{k} = (I-M)S$$

$$I \approx (I-M)S$$

$$\Rightarrow (I-M)^{-1} \approx S$$

• Assume $\mathbf{M}^k \to \mathbf{0}$ (why?)

$$I-M^k=(I-M)S$$

$$I \approx (I - M)S$$

$$\Rightarrow (\mathbf{I} - \mathbf{M})^{-1} \approx \mathbf{S}$$

• Wait, how did we get onto this?

• How did we get onto this?

$$\vec{\mathbf{B}} = (\mathbf{I} - \mathbf{M})^{-1} \vec{\mathbf{E}}$$

$$(\mathbf{I} - \mathbf{M})^{-1} \approx \mathbf{S}$$

$$\vec{\mathbf{B}} \approx \mathbf{S}\vec{\mathbf{E}} = (\mathbf{I} + \mathbf{M} + \mathbf{M}^2 + ... + \mathbf{M}^k)\vec{\mathbf{E}}$$

- Suggests iterative approach:
- let \mathbf{B}_{t} represent vector of radiosities at iteration t

$$\vec{\mathbf{B}}_0 = \vec{\mathbf{E}}$$

$$\vec{\mathbf{B}}_1 = \mathbf{M}\vec{\mathbf{B}}_0 + \vec{\mathbf{E}} = (\mathbf{M}\vec{\mathbf{E}} + \vec{\mathbf{E}}) = (\mathbf{I} + \mathbf{M})\vec{\mathbf{E}}$$

$$\vec{\mathbf{B}}_{t} = \mathbf{M} \vec{\mathbf{B}}_{t-1} + \vec{\mathbf{E}} = (\mathbf{I} + \mathbf{M} + \dots + \mathbf{M}^{t-1}) \vec{\mathbf{E}}$$

• pros:

- iterative solution does not require matrix inversion
- converges to correct answer
- preliminary results are approximately correct
 (can stop early and have useful result)

• cons:

- matrix is hard to compute
- takes a lot of memory
- can rearrange the iteration for faster convergence...

more next time

- also: project 5 out wednesday
- project 4 due then too