Ray tracing

EECS 487 March 19, 2007

Conventional pipeline (rasterization)

- For each triangle
 - Compute lighting at vertices
 - For each pixel within triangle
 - Compute interpolated color and depth
 - Write pixel if depth test passes
- Q: the above description is somewhat "old style"
 - how have things changed lately?

Conventional pipeline (rasterization)

- For each triangle
 - Compute lighting at vertices
 - For each pixel within triangle
 - Compute interpolated color and depth
 - Write pixel if depth test passes
- Q: the above description is somewhat "old style"
 - how have things changed lately?
- A: can now do per-pixel lighting

Advantages of conventional pipeline

- Simple
- Can be implemented in hardware
 - Parallel processing (SIMD)
 - Vertices
 - Pixels
- Visibility determination is fast
 - z-buffer

Disadvantages

- Missing effects
 - namely?

Disadvantages

- Missing effects
 - shadows
 - reflection
 - refraction through transparent surfaces
 - color bleeding
 - depth of field
 - motion blur
 - caustics
- Undesirable effect: Aliasing

Refraction, hard shadows, reflection

Soft shadows

http://www-csl.csres.utexas.edu/users/billmark/teach/cs384g-05-fall/projects/ray/ray_examples/

Color bleeding

Depth of field

From today's New York Times

Motion blur

Caustics

Degrees of ray-tracing

- Ray-casting
 - same disadvantages as rasterization,but slower!
- Classical ray-tracing (today)
 - extension of ray-casting (slower still)
- Monte carlo ray-tracing (next class)
 - extension of classical ray-tracing (waaaay slower)

Ray-casting

- For each *pixel*
 - Compute ray into scene
 - Find intersection with nearest object
 - Compute lighting (via position, normal)

Advantages of ray-casting

• Simple

Advantages of ray-casting

- Simple
- Can be extended to include global illumination effects:
 - Reflections (specular, glossy)
 - Shadows (hard, soft)
 - Depth of field
 - Motion blur
- Then it's called ray-tracing

Disadvantages of ray-tracing

- Done in software: slower
- Adding realism can increase computations exponentially: monte carlo ray tracing,
 AKA distribution ray-tracing

Classical ray-tracing

- Primary ray
 - leaves the eye and travels out to the scene
- When hit spawn three new rays

to "collect light"

- shadow ray
 - towards light
- reflection ray
- transparency ray

The ray tree

Raytracing is recursive

- I(incident-out) = I(shadow-local-in)
 - + Kr * I(reflection-in)
 - + Kt * I(transparent-in)

- what is a range of Kr and Kt?
- Without recursion we have ray casting

Ray Reflections

$$\theta_{l} = \theta_{r}$$

$$\overrightarrow{R} = \overrightarrow{I} - 2(\overrightarrow{N} \bullet \overrightarrow{I}) \overrightarrow{N}$$

Ray Refraction

Snell's Law

$$\frac{\sin(\theta_i)}{\sin(\theta_t)} = \eta_{21} = \frac{\eta_2}{\eta_1}$$

Index of refraction: ratio of speed of light in a vacuum to speed in the material

Light Attenuation in transparent materials

- Light may lose intensity and shift color
 - effect increases with distance
- Beer's law
 - Fall-off is exponential w/ distance
 - r, g, b components computed separately
 - text has details

http://www.jasonwaltman.com/graphics/rt-soft-fuzzy.html

Watch out for...

- Total internal refraction
 - light may not get through the interface

Computing intersections

- Crucial computation (inner loop)
- Spheres
- Planes
- CSGs

image from: http://groups.csail.mit.edu/graphics/classes/6.838/F01/lectures/SmoothSurfaces/csg-raytrace.gif

pop quiz

- given ray: r(t) = p + td
 where p is the ray origin,
 d is a vector along the ray
- find the value of t for which $\mathbf{r}(t)$ lies on the unit sphere with center at the origin

Speed-up techniques

- Bounding volumes
 - Spheres
 - Boxes
- Uniform spatial subdivision
- Hierarchical bounding boxes

Using hierarchical bounding boxes

To check for intersections w/ objects in box:

- if ray misses box, return none
- if box is "leaf" test intersections w/ each triangle stored in the box, return closest
- else check for intersections w/ each child box,
 return closest

Problem (classical ray tracing): images are too clean

http://www.tjhsst.edu/~dhyatt/supercomp/p501.html

What's missing

- Reflections are perfect
- Shadows are hard
- Everything is in focus
- Shutter speed is infinite
- Prone to aliasing

Strategy: random sampling

Can address all problems listed on previous slide

anti-aliasing

- many rays per pixel
 - regular sampling
 - random sampling
- more on this next time

soft shadows

- one approach: use many lights
 - approximate an area light with many point lights
 - problem: overlapping hard shadows

- alternate approach:
 - sample the area light randomly w/ rays
 - random sampling discussed in text

http://www.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/realistic_raytracing.html

more effects

- glossy reflection
 - follow multiple reflection rays, jittered randomly
- motion blur
 - multiple rays, jittered in time
- depth of field
 - multiple rays, jittered around eye, through focal plane
- more details next class

Wrap up

- Shirley (our textbook) has details on computing random samples effectively
- Project 5 (ray tracing) will go out next week
- Guest speaker next week:
 Manoj Rajagopalan
- I'll be out of town
 - no office hours