Texture Mapping

Adapted from slides by Rich Riesenfeld

http://www.cs.utah.edu/classes/cs5600/

Texture Mapping

- Maps a pattern (texture) onto a surface
- Texels fill each pixel
- Texels selected from sample pattern (texture map)
- Pattern is often repeated

Texture Mapping Characteristics

- Too much detail to model geometrically, like grass, etc
- Pattern is repeated (periodic)

Texture Maps

Tiling textures

Tiling textures

Basic Concept

(2D Texture maps)

- Relate a 2D image to a 3D model
- Texture coordinates
 - -2D coordinate (u,v) that corresponds to a location in the texture image
 - -usually in range [0,1]

Elements of Texture Mapping

- Texture source function (1D, 2D or 3D)
- Inverse map:

texture location surface location

- Typical texture sources
 - Procedure
 - -Tabular data (texture image)

Texture Mapping Techniques

- 2D texture mapping: paint 2D pattern onto the surface
- Environmental (reflection) mapping
- *Bump mapping*: perturb surface normals to fool shading algorithms
- Procedural texture mapping

Need to Impose Parametrization

Using a planar projection

More Examples

Texture Mapping, Paul Bourke (1987)

http://astronomy.swin.edu.au/~pbourke/texture/texturemapping

Texture Mapped Teapot

Examples

Steps in Texture Mapping (OpenGL)

- 1. Create a texture object and specify a texture for that object
- 2. Indicate how the texture is to be applied to each pixel
- Render the scene, supplying both texture and geometric coordinates

Mapping the 2D Texture to Surface

- The map: 2D texture $(s,t) \rightarrow 3D$ object(x,y,z)
- Mapping onto triangle is not difficult
- Mapping onto triangular mesh is more difficult (have to handle texture discontinuity)
- Mapping onto parametric surface is easier
- Alternative: use an intermediate parametric surface (cylinder, sphere)

Texture Mapping for Meshes

- Assign per-vertex texture coordinate
- During rasterization: interpolate texture coordinates at each pixel (similar to project 1)
- Lookup texture color via texture coordinate

Mapping Texture

Mapping Texture onto Parametric Surface

Parametric surface:

$$S(u,v) = (x(u,v), y(u,v), z(u,v))$$

Use (u,v) as texture coordinates

Using an intermediate surface

- Two-step mapping:
 - Map the texture to a simple intermediate surface (sphere, cylinder, cube)
 - Map the intermediate surface (with the texture) onto the surface being rendered

c: center of mesh
p: point on mesh
p': projection of p onto sphere
p'= (p-c)/19-cl (unit sphere)

spherical projection, cont'd

- starting with point p on the surface
- project to point p' on unit sphere:
 p' = (p c)/|p c|
- now use (x,y,z) coordinates of p' to compute (u,v) coordinates via the natural parameterization of the sphere

spherical projection, cont'd

details of last step explained in project 2

MIP Mapping (multum in parvo)

"Many things in a small place"

Mipmapped Textures

- Mipmapping:
 - prefiltered texture maps
 - decreasing resolutions
 - used to combat aliasing
- OpenGL supports mipmapping

Aliasing

aliasing (left); antialiased (middle, right) (from wikipedia)

Bump Mapping

smooth silhouettes

Bump mapping

- 2D texture maps don't interact w/ lighting
- Bump mapping: use texture map to define perturbed surface normals
- Compute lighting using perturbed normals

www.okino.com/slidshow/bowling2.htm Okino Computer Graphics

More Examples

Texture Mapping as a Fundamental Drawing Primitive

Paul Haeberli and Mark Segal

(1993) www.sgi.com/misc/grafica/texmap/

Contours indicate equidistance from reference plane

Environment Mapping

Projective Texture Mapping

