Alan Shreve
EECS 487
Special Assignment Paper
3/26/2007
Direct 3D: Origins and Evolution

Direct3D, a graphics API part of the larger DirectX package offered by Microsoft, remains the
only other major alternative to OpenGL. Used widely among computer game developers, Direct3D has
made inroads into the 3D graphics world despite woefully buggy early versions and outspoken
criticism from multiple sources in the graphics community. The DirectX software continues to grow
more usable, efficient, and feature-rich with each version as Microsoft strives to preserve one of the
important consumer incentives of its Windows platform. The newest version of DirectX was released
recently as part of Microsoft's latest operating system, Windows Vista, where it powers the oft-
criticized new Aero GUI. But the earliest versions of DirectX were much smaller and less integral parts
of the Windows platform, aimed at game developers who had previously written games in DOS.

Despite the release of Windows 95, the majority of computer games were still being released
for DOS, due to the slow performance of the Windows API for rendering graphics. In an effort to
retain developers' interests in writing games for Microsoft platforms, an API for communicating
directly to the hardware device drivers, bypassing all of Windows' layers of indirection was devised.
Microsoft purchased the majority of the original code for this project from a small company called
RenderMorphics. This code formed the base for the initial release of DirectX.

The game developers community widely rejected the first, and subsequent versions of DirectX.

The early versions were mired in slow, buggy implementations which used an awkward and complex

interface. Microsoft went through many iterations, releasing versions two, three, and skipping four
entirely before arriving at an API that was acceptable to use in DirectX 5.

Before the release of DirectX 5, rendering through DirectX was accomplished through a system
of “execute buffers.” An execute buffer is a packet of information containing a list of all vertices which
would be rendered, followed by a series of instructions which described how the vertices were to be
rendered. DirectX 5 introduced an interface called DrawPrimitive, which was much less complex and
easier to use, yet still had comparative performance. For the first time, DirectX became a viable
platform for developing Windows games.

A more usable version of the DirectX API and the increasing sales of the computer game
market set the stage for a battle of 3D APIs that would embroil the computer graphics community.
Choice of which graphics API (Direct3D and OpenGL) to use when developing a new game quickly
became an important choice. Tensions mounted over allegations of relative performance of the APIs,
and continued in flurries of posts to mailing lists and newsgroups. Some of the most important industry
figures came out attacking Microsoft and the Direct3D API.

John Carmack, lead software designer at id Software, in December of 1996, posted a searing
criticism of the Direct3D API, saying, “Direct-3D IM is a horribly broken API. It inflicts great pain and
suffering on the programmers using it, without returning any significant advantages. I don't think there
1s ANY market segment that D3D is apropriate for, OpenGL seems to work just fine for everything
from quake to softimage. There is no good technical reason for the existance of D3D.” He urged
Microsoft to reconsider their direction and to instead focus on implementing a good, working version

of the OpenGL API. Following Carmack, multiple letters were sent by many of the important

programmers in the computer graphics community to Microsoft encouraging them to support only a
single API: OpenGL. Microsoft responded with its own form of evangelism, including multiple
demonstrations in which they claimed superior performance to OpenGL. These claims were often
found to be based in misleading methods or faulty bases of comparison. A good deal of argument over
speed was centered around the performance of software renderers, which have since been made
relatively obsolete with the advent of cheap, and powerful GPUs.

In spite of the game development community's outcry, and Direct3D's rocky beginnings,
DirectX has become the more popular API for building computer games. DirectX won over game
developers for multiple reasons which usually boiled down to simple pragmatism. The ability of a
complete suite of tools to use for game development outside of Direct3D, for controlling audio, input
devices, and other aspects made the API more appealing. The lack of a large market for games on
Apple computers made forfeiting cross-platform possibilities a minor sacrifice. Furthermore, DirectX
supported the ability to query the hardware for its abilities, whereas OpenGL would simply revert to
software rendering, which for any graphics intensive computer game is not useful.

Direct3D has continued evolving through its versions. DirectX is now built around the COM
(Component Object Model) framework, and thus can be used in any language which is COM aware.
(C++, C#, Visual Basic) It is even possible to use DirectX in C, though often painful. Further, DirectX
has made strides alongside OpenGL to provide an interface for custom shaders to be used in parts of
the graphics pipeline. And although Microsoft has attempted to avoid major changes in the framework,
Direct3D's powerful 2D API known as DirectDraw, was deprecated with the release of DirectX 8.

Moving forward, DirectX 10 has just been released, which includes more improvements to the DirectX

suite.

Direct3D 10 is the result of three years of Microsoft development alongside input from
application writers and hardware vendors. Direct3D 10 makes a number of important changes from its
predecessors including a modified graphics pipeline in the hopes that it will afford applications
programmers greater performance and flexibility.

The Direct3D pipeline includes an entire new programmable stage of the pipeline termed the
geometry shader (GS). A GS program takes as input one primitive and allows the output of between 0
and 1024 primitives of any type. It is executed after the vertex shader, and before rasterization.

Although the input assembler (IA) and output

. Indax
merger (OM) stages were considered for Input Assembler e = Buffer
{I1A) . Verex [hH
.) . 1in.1 out e Buffer
programmability, Direct3D designers I 1BxdxE2b
16abazh |4 *lds e
: . . e 412 14 '
ultimately reject the increased versatility citing R B :@7 e [
Y1) - |
1in, 1 |W5:I i T T |
. ini o
performance concerns, thus leaving those ;ﬂ,’ J onstant || 128
il e 1&
. . . ; Sampler 4 Texture
stages as fixed functionality. EE:-?E:TC:E] |_ |
128

idudei2b

Programmable pipeline stages have also

HiCull # T Stream
o) | ot | Giep e
[(50) utter
been improved to all use the same virtual

Clip + Project + dord
Sewp + Early £ +
Rasterze {hS_I

I | I Faang
< ” . . ;
common core.” The design of this common .
Pixel Shader k Sampler T Texture]
128

machine for calculations, which designers call Memary

(PS) ¥
core includes input and output registers, — — Constant ||
Bacdxi2b #
12b + b
temporary registers and resource bindin
porary reg g = 3 [Depty
Output Merger | Azbein Stencil
points. The core is controlled by an assembly- (OM) . | Render
1im 1 oul o - Target
H32b
i

The Direct3D 10 Pineline

like language of 32 bit instructions. However, it is not intended for application programmers to write
shaders in this assembly language. Rather, Microsoft has introduced a new version of its shading
language HLSL (High Level Shading Language) which it hopes will be used by application
programmers to write custom shaders without the knowledge of the underlying guts of the
implementation.

The latest advances in Direct3D have made it a 3D API which is now of similar import as Open
GL. Much ill will over Microsoft's previous practices and closed-source, vendor-lock in strategies
remain, so looking to the future it will be interest to see in which direction Microsoft moves next and

how the graphics community responds.

References:

http://download.microsoft.com/download/{/2/d/f2d5ee2c-b7ba-4cd0-9686-

b6508b5479al/direct3d10 web.pdf

http://www.gamedev.net/reference/articles/article1775.asp

http://www.azillionmonkeys.com/windoze/OpenGLyvsDirect3D.html

http://www.gamedev.net/reference/articles/article1775.asp
http://download.microsoft.com/download/f/2/d/f2d5ee2c-b7ba-4cd0-9686-b6508b5479a1/direct3d10_web.pdf
http://download.microsoft.com/download/f/2/d/f2d5ee2c-b7ba-4cd0-9686-b6508b5479a1/direct3d10_web.pdf

