
1Mao W07

Overview continued
and

sockets

EECS 489 Computer Networks
http://www.eecs.umich.edu/courses/eecs489/w07

Z. Morley Mao
Wednesday Jan 10, 2007

Acknowledgement: Some slides taken from Kurose&Ross and Katz&Stoica

2Mao W07

Administrivia

Homework 1 is online later today
Class Phorum: http://phorum.eecs.umich.edu
Class mailing list: eecs489@eecs.umich.edu
Please read chapter 1 of Kurose’s book
Any questions?

3Mao W07

Small Review

What is the difference between circuit switching
and packet switching?
What is the difference between connection-
oriented and connectionless services?
What is the difference between circuit switching
and connection-oriented service?

4Mao W07

The Network Core

mesh of
interconnected routers
the fundamental
question: how is data
transferred through
net?

- circuit switching:
dedicated circuit per
call: telephone net

- packet-switching: data
sent thru net in discrete
“chunks”

5Mao W07

Network Core: Circuit Switching

End-end resources
reserved for “call”
link bandwidth, switch
capacity
dedicated resources:
no sharing
circuit-like
(guaranteed)
performance
call setup required

6Mao W07

Network Core: Circuit Switching

network resources (e.g.,
bandwidth) divided
into “pieces”
pieces allocated to calls
resource piece idle if not
used by owning call (no
sharing)

dividing link bandwidth
into “pieces”

- frequency division
- time division

7Mao W07

Circuit Switching: FDM and TDM

FDM

frequency

time
TDM

frequency

time

4 users
Example:

8Mao W07

Network Core:
Packet Switching

each end-end data stream
divided into packets
user A, B packets share
network resources
each packet uses full link
bandwidth
resources used as needed

resource contention:
aggregate resource
demand can exceed
amount available
congestion: packets
queue, wait for link use
store and forward:
packets move one hop at
a time

- Node receives complete
packet before forwardingBandwidth division into “pieces”

Dedicated allocation
Resource reservation

9Mao W07

Packet Switching:
Statistical Multiplexing

Sequence of A & B packets does not have fixed pattern
statistical multiplexing.

In TDM each host gets same slot in revolving TDM frame.

A

B

C10 Mb/s
Ethernet

1.5 Mb/s

D E

statistical multiplexing

queue of packets
waiting for output link

10Mao W07

Packet switching versus
circuit switching

1 Mb/s link
each user:

- 100 kb/s when “active”
- active 10% of time

circuit-switching:
- 10 users

packet switching:
- with 35 users, probability

> 10 active less than
.0004

- 1-Sum of the probabilities
that 1,2,…10 users are
active

Packet switching allows more users to use network!

N users
1 Mbps link

11Mao W07

Packet switching versus
circuit switching

Great for bursty data
- resource sharing
- simpler, no call setup

More resilient to failures
Excessive congestion: packet delay and loss

- protocols needed for reliable data transfer,
congestion control

Q: How to provide circuit-like behavior?
- bandwidth guarantees needed for audio/video apps
- still an unsolved problem
- Overprovisioning often used

Is packet switching a “slam dunk winner?”

12Mao W07

Packet-switching:
store-and-forward

Takes L/R seconds to transmit
(push out) packet of L bits on
to link or R bps
Entire packet must arrive at
router before it can be
transmitted on next link:

store and forward
delay = 3L/R

Example:
L = 7.5 Mbits
R = 1.5 Mbps
delay = 15 sec

R R R
L

13Mao W07

Packet-switched networks:
forwarding

Goal: move packets through routers from source to
destination

- we’ll study several path selection (i.e. routing) algorithms

datagram network:
- destination address in packet determines next hop
- routes may change during session
- analogy: driving, asking directions

virtual circuit network:
- each packet carries tag (virtual circuit ID), tag determines next

hop
- fixed path determined at call setup time, remains fixed thru call
- routers maintain per-call state

14Mao W07

Network Taxonomy
Telecommunication

networks

Circuit-switched
networks

FDM TDM

Packet-switched
networks

Networks
with VCs

Datagram
Networks

• Datagram network is neither connection-oriented
nor connectionless.
• Internet provides both connection-oriented (TCP) and
connectionless services (UDP) to apps.

15Mao W07

Internet structure:
network of networks

roughly hierarchical
at center: “tier-1” ISPs (e.g., UUNet, BBN/Genuity, Sprint,
AT&T), national/international coverage

- treat each other as equals

Tier 1 ISP

Tier 1 ISP

Tier 1 ISP

Tier-1
providers
interconnect
(peer)
privately

NAP

Tier-1 providers
also interconnect
at public network
access points
(NAPs)

16Mao W07

Tier-1 ISP: e.g., Sprint
Sprint US backbone network

17Mao W07

Routing is Not Symmetric
Web request and TCP ACKs

Web response

client

server

18Mao W07

Internet structure:
network of networks

“Tier-2” ISPs: smaller (often regional) ISPs
- Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs

Tier 1 ISP

Tier 1 ISP

Tier 1 ISP

NAP

Tier-2 ISPTier-2 ISP

Tier-2 ISP Tier-2 ISP

Tier-2 ISP

Tier-2 ISP pays
tier-1 ISP for
connectivity to
rest of Internet

tier-2 ISP is
customer of
tier-1 provider

Tier-2 ISPs
also peer
privately with
each other,
interconnect
at NAP

19Mao W07

Internet structure:
network of networks

“Tier-3” ISPs and local ISPs
- last hop (“access”) network (closest to end systems)

Tier 1 ISP

Tier 1 ISP

Tier 1 ISP

NAP

Tier-2 ISPTier-2 ISP

Tier-2 ISP Tier-2 ISP

Tier-2 ISP

local
ISPlocal

ISP
local
ISP

local
ISP

local
ISP Tier 3

ISP

local
ISP

local
ISP

local
ISP

Local and tier-
3 ISPs are
customers of
higher tier
ISPs
connecting
them to rest
of Internet

20Mao W07

Internet structure:
network of networks

a packet passes through many networks!

Tier 1 ISP

Tier 1 ISP

Tier 1 ISP

NAP

Tier-2 ISPTier-2 ISP

Tier-2 ISP Tier-2 ISP

Tier-2 ISP

local
ISPlocal

ISP
local
ISP

local
ISP

local
ISP Tier 3

ISP

local
ISP

local
ISP

local
ISP

21Mao W07

How do loss and delay occur?
packets queue in router buffers

packet arrival rate to link exceeds output link capacity
packets queue, wait for turn

A

B

packet being transmitted (delay)

packets queueing (delay)
free (available) buffers: arriving packets
dropped (loss) if no free buffers

22Mao W07

Four sources of packet delay
1. nodal processing:

- check bit errors
- determine output link

A

B

propagation

transmission

nodal
processing queueing

2. queueing
- time waiting at output

link for transmission
- depends on

congestion level of
router

23Mao W07

Delay in packet-switched networks
3. Transmission delay:

R=link bandwidth (bps)
L=packet length (bits)
time to send bits into link
= L/R

4. Propagation delay:
d = length of physical link
s = propagation speed in
medium (~2x108 m/sec)
propagation delay = d/s

A

B

propagation

transmission

nodal
processing queueing

Note: s and R are very different
quantities!

24Mao W07

Caravan analogy

Cars “propagate” at
100 km/hr
Toll booth takes 12 sec to
service a car (transmission time)
car~bit; caravan ~ packet
Q: How long until caravan is
lined up before 2nd toll booth?

Time to “push” entire caravan
through toll booth onto highway
= 12*10 = 120 sec
Time for last car to propagate
from 1st to 2nd toll both:
100km/(100km/hr)= 1 hr
A: 62 minutes

toll
booth

toll
booth

ten-car
caravan

100 km 100 km

25Mao W07

Caravan analogy (more)

Cars now “propagate” at
1000 km/hr
Toll booth now takes 1 min to
service a car
Q: Will cars arrive to 2nd
booth before all cars serviced
at 1st booth?

Yes! After 7 min, 1st car at 2nd
booth and 3 cars still at 1st booth.
1st bit of packet can arrive at 2nd
router before packet is fully
transmitted at 1st router!

toll
booth

toll
booth

ten-car
caravan

100 km 100 km

26Mao W07

Nodal delay

dproc = processing delay
- typically a few microsecs or less

dqueue = queuing delay
- depends on congestion

dtrans = transmission delay
- = L/R, significant for low-speed links

dprop = propagation delay
- a few microsecs to hundreds of msecs

proptransqueueprocnodal ddddd +++=

27Mao W07

Queueing delay (revisited)

R=link bandwidth (bps)
L=packet length (bits)
a=average packet arrival
rate

traffic intensity = La/R

La/R ~ 0: average queueing delay small
La/R -> 1: delays become large
La/R > 1: more “work” arriving than can be serviced,
average delay infinite!

28Mao W07

“Real” Internet delays and routes

What do “real” Internet delay & loss look like?
Traceroute program: provides delay
measurement from source to router along end-
end Internet path towards destination. For all i:
- sends three packets that will reach router i on path

towards destination
- router i will return packets to sender
- sender times interval between transmission and reply.

3 probes

3 probes

3 probes

29Mao W07

Traceroute: Measuring the
Forwarding Path

Time-To-Live field in IP packet header
- Source sends a packet with a TTL of n
- Each router along the path decrements the TTL
- “TTL exceeded” sent when TTL reaches 0

Traceroute tool exploits this TTL behavior

source destination

TTL=1
Time

exceeded

TTL=2

Send packets with TTL=1, 2, 3, … and record source of “time exceeded” message

30Mao W07

“Real” Internet delays and routes

1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms
2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms
3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms
4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms
5 jn1-so7-0-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms
6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms
7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 22 ms
8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms
9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms
10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms
11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms
12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms
13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms
14 r3t2-nice.cssi.renater.fr (195.220.98.110) 126 ms 126 ms 124 ms
15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms
16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms
17 * * *
18 * * *
19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms

traceroute: gaia.cs.umass.edu to www.eurecom.fr
Three delay measements from
gaia.cs.umass.edu to cs-gw.cs.umass.edu

* means no reponse (probe lost, router not replying)

trans-oceanic
link

31Mao W07

Packet loss

queue (aka buffer) preceding link in buffer has
finite capacity
when packet arrives to full queue, packet is
dropped (aka lost)
lost packet may be retransmitted by previous
node, by source end system, or not retransmitted
at all

32Mao W07

Protocol “Layers”
Networks are complex!

many “pieces”:
- hosts
- routers
- links of various

media
- applications
- protocols
- hardware, software

Question:
Is there any hope of
organizing structure of

network?

Or at least our discussion
of networks?

33Mao W07

Organization of air travel

a series of steps

ticket (purchase)

baggage (check)

gates (load)

runway takeoff

airplane routing

ticket (complain)

baggage (claim)

gates (unload)

runway landing

airplane routing

airplane routing

34Mao W07

ticket (purchase)

baggage (check)

gates (load)

runway (takeoff)

airplane routing

departure
airport

arrival
airport

intermediate air-traffic
control centers

airplane routing airplane routing

ticket (complain)

baggage (claim

gates (unload)

runway (land)

airplane routing

ticket

baggage

gate

takeoff/landing

airplane routing

Layering of airline functionality

Layers: each layer implements a service
- via its own internal-layer actions
- relying on services provided by layer below

35Mao W07

Why layering?
Dealing with complex systems:

explicit structure allows identification, relationship of
complex system’s pieces

- layered reference model for discussion
modularization eases maintenance, updating of
system

- change of implementation of layer’s service
transparent to rest of system

- e.g., change in gate procedure doesn’t affect rest
of system

layering considered harmful?

36Mao W07

Internet protocol stack

application: supporting network
applications

- FTP, SMTP, STTP

transport: host-host data transfer
- TCP, UDP

network: routing of datagrams from
source to destination

- IP, routing protocols

link: data transfer between
neighboring network elements

- PPP, Ethernet

physical: bits “on the wire”

application

transport

network

link

physical

37Mao W07

message
segment

datagram
frame

source
application
transport
network

link
physical

HtHnHl M
HtHn M

Ht M
M

destination
application
transport
network

link
physical

HtHnHl M
HtHn M

Ht M
M

network
link

physical

link
physical

HtHnHl M
HtHn M

HtHnHl M
HtHn M

HtHnHl M HtHnHl M

router

switch

Encapsulation

38Mao W07

IP Packet Structure

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

2020--bytebyte
HeaderHeader

usually IPv4 usually 20 bytes

fragments

error
check
header

39Mao W07

Layering in the IP Protocols

Internet Protocol

Transmission Control
Protocol (TCP)

User Datagram
Protocol (UDP)

TelnetHTTP

SONET ATMEthernet

RTPDNSFTP

40Mao W07

Application-Layer Protocols

Messages exchanged between applications
- Syntax and semantics of the messages between hosts

- Tailored to the specific application (e.g., Web, e-mail)

- Messages transferred over transport connection (e.g.,
TCP)

Popular application-layer protocols
- Telnet, FTP, SMTP, NNTP, HTTP, …

Client Server
GET /index.html HTTP/1.1

HTTP/1.1 200 OK

41Mao W07

Example: Many Steps in Web
Download

Browser
cache

DNS
resolution

TCP
open

1st byte
response

Last byte
response

Sources of variability of delay
• Browser cache hit/miss, need for cache revalidation
• DNS cache hit/miss, multiple DNS servers, errors
• Packet loss, high RTT, server accept queue
• RTT, busy server, CPU overhead (e.g., CGI script)
• Response size, receive buffer size, congestion
• … downloading embedded image(s) on the page

42Mao W07

Domain Name System (DNS)

Properties of DNS
- Hierarchical name space divided into zones
- Translation of names to/from IP addresses
- Distributed over a collection of DNS servers

Client application
- Extract server name (e.g., from the URL)
- Invoke system call to trigger DNS resolver code
- E.g., gethostbyname() on “www.foo.com”

Server application
- Extract client IP address from socket
- Optionally invoke system call to translate into name
- E.g., gethostbyaddr() on “12.34.158.5”

43Mao W07

Domain Name System

com edu org ac uk zw arpa

unnamed root

bar

west east

foo my

ac

cam

usr

in-
addr

12

34

56

generic domains country domains

my.east.bar.edu usr.cam.ac.uk

12.34.56.0/24

44Mao W07

DNS Resolver and
Local DNS Server

Application

DNS resolver

Local DNS
server

1 10

DNS cache

DNS query
2

DNS response 9

Root server

3

4

Top-level
domain server

5

6

Second-level
domain server

7

8

Caching based on a time-to-live (TTL) assigned by the DNS server
responsible for the host name to reduce latency in DNS translation.

45Mao W07

Sockets Programming

46Mao W07

Outline

Socket API motivation, background
Names, addresses, presentation
API functions
I/O multiplexing

47Mao W07

Applications need Application Programming Interface (API)
to use the network

API: set of function types, data structures and constants
• Allows programmer to learn once, write anywhere
• Greatly simplifies job of application programmer

Motivation

physical

data-link

network

transport

application
API

48Mao W07

Socket-programming using TCP

Socket: a door between application process and end-
end-transport protocol (UCP or TCP)

TCP service: reliable transfer of bytes from one process
to another

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating
system

host or
server

internet

49Mao W07

Socket programming with TCP
Client must contact server

server process must first be
running
server must have created
socket (door) that welcomes
client’s contact

Client contacts server by:
creating client-local TCP
socket
specifying IP address, port
number of server process
When client creates socket:
client TCP establishes
connection to server TCP

When contacted by client, server
TCP creates new socket for
server process to communicate
with client

- allows server to talk with
multiple clients

- source port numbers used to
distinguish clients

TCP provides reliable, in-order
transfer of bytes (“pipe”)
between client and server

application viewpoint

50Mao W07

Sockets (1)

Useful sample code available at
- http://www.kohala.com/start/unpv22e/unpv22e.html

What exactly are sockets?
- An endpoint of a connection
- A socket is associated with each end-point (end-host) of

a connection

Identified by IP address and port number

Berkeley sockets is the most popular network API
- Runs on Linux, FreeBSD, OS X, Windows
- Fed/fed off popularity of TCP/IP

51Mao W07

Sockets (2)

Similar to UNIX file I/O API (provides file
descriptor)

Based on C, single threaded model
- Does not require multiple threads

Can build higher-level interfaces on top of
sockets

- e.g., Remote Procedure Call (RPC)

52Mao W07

Types of Sockets (1)

Different types of sockets implement different
service models

- Stream v.s. datagram
Stream socket (aka TCP)

- Connection-oriented (includes establishment +
termination)

- Reliable, in order delivery
- At-most-once delivery, no duplicates
- E.g., ssh, http

Datagram socket (aka UDP)
- Connectionless (just data-transfer)
- “Best-effort” delivery, possibly lower variance in delay
- E.g., IP Telephony, streaming audio

53Mao W07

Types of Sockets (2)
How does application programming differ
between stream and datagram sockets?
Stream sockets

- No need to packetize data
- Data arrives in the form of a byte-stream
- Receiver needs to separate messages in stream

User application sends messages
“Hi there!” and “Hope you are well”
separately

physical

data-link

network

transport

applicationTCP sends messages
joined together, ie. “Hi
there!Hope you are
well”

54Mao W07

Types of Sockets (3)

Stream socket data separation:
- Use records (data structures) to partition data stream
- How do we implement variable length records?

- What if field containing record size gets corrupted?
• Not possible! Why?

A B C 4

fixed length
record

fixed length
record

variable length
record

size of
record

55Mao W07

Types of Sockets (4)

Datagram sockets
- User packetizes data before sending
- Maximum size of 64Kbytes
- Further packetization at sender end and

depacketization at receiver end handled by
transport layer

- Using previous example, “Hi there!” and “Hope
you are well” will definitely be sent in separate
packets at network layer

56Mao W07

Naming and Addressing

IP version 4 address
- Identifies a single host
- 32 bits
- Written as dotted octets

• e.g., 0x0a000001 is 10.0.0.1
Host name

- Identifies a single host
- Variable length string
- Maps to one or more IP address

• e.g., www.cnn.com
- Gethostbyname translates name to IP address

Port number
- Identifies an application on a host
- 16 bit unsigned number

57Mao W07

Presentation

high-order byte low-order byte

increasing memory addresses

address Aaddress A +1

little-endian
(Intel x86
Alpha)

big-endian
(Sun, HP) low-order byte high-order byte

16-bit value

(network byte-order)

Always translate short, long, int to/from “network byte order”
before/after transmission: htons(), htonl(), ntohs(), ntohl()

58Mao W07

Byte Ordering Solution

uint16_t htons(uint16_t host16bitvalue);
uint32_t htonl(uint32_t host32bitvalue);
uint16_t ntohs(uint16_t net16bitvalue);
uint32_t ntohl(uint32_t net32bitvalue);

Use for all numbers (int, short) to be sent across
network

- Including port numbers, but not IP addresses

59Mao W07

Stream Sockets

Implements Transmission Control Protocol (TCP)
Does NOT set up virtual-circuit!
Sequence of actions: socket ()

bind ()

listen ()
accept ()

recv ()

close ()

socket ()
connect ()

send ()

send ()recv ()

close ()
time

initialize

establish

data
xfer

terminate

Client Server

60Mao W07

Initialize (Client + Server)

int sock;

if ((sock = socket(AF_INET, SOCK_STREAM,
IPPROTO_TCP)) < 0) {

perror("socket");

printf("Failed to create socket\n");
abort ();

}

Handling errors that occur rarely usually
consumes most of systems code

- Exceptions (e.g., in java) helps this somewhat

61Mao W07

Initialize (Server reuse addr)

After TCP connection closes, waits for 2MSL, which is twice
maximum segment lifetime (from 1 to 4 mins)
Segment refers to maximum size of a packet
Port number cannot be reused before 2MSL
But server port numbers are fixed ⇒ must be reused
Solution:

int optval = 1;
if ((sock = socket (AF_INET, SOCK_STREAM, 0)) < 0)

{
perror ("opening TCP socket");
abort ();

}
if (setsockopt (sock, SOL_SOCKET, SO_REUSEADDR,
&optval,

sizeof (optval)) <0)
{

perror (“reuse address");
abort ();

}

62Mao W07

Initialize (Server bind addr)

Want port at server end to use a particular number

struct sockaddr_in sin;

memset (&sin, 0, sizeof (sin));

sin.sin_family = AF_INET;
sin.sin_addr.s_addr = IN_ADDR;
sin.sin_port = htons (server_port);

if (bind(sock, (struct sockaddr *) &sin, sizeof (sin)) < 0) {
perror(“bind");
printf("Cannot bind socket to address\n");
abort();

}

63Mao W07

Initialize (Server listen)

Wait for incoming connection
Parameter BACKLOG specifies max number of established
connections waiting to be accepted (using accept())

if (listen (sock, BACKLOG) < 0)
{

perror (“error listening");
abort ();

}

64Mao W07

Establish (Client)

struct sockaddr_in sin;

struct hostent *host = gethostbyname (argv[1]);
unsigned int server_addr = *(unsigned long *) host->h_addr_list[0];
unsigned short server_port = atoi (argv[2]);

memset (&sin, 0, sizeof (sin));

sin.sin_family = AF_INET;
sin.sin_addr.s_addr = server_addr;
sin.sin_port = htons (server_port);

if (connect(sock, (struct sockaddr *) &sin, sizeof (sin)) < 0) {
perror("connect");
printf("Cannot connect to server\n");
abort();

}

65Mao W07

Establish (Server)

Accept incoming connection

int addr_len = sizeof (addr);
int sock;

sock = accept (tcp_sock, (struct sockaddr *)
&addr, &addr_len);

if (sock < 0)
{
perror ("error accepting connection");
abort ();

}

66Mao W07

Sending Data Stream

int send_packets (char *buffer, int buffer_len)
{

sent_bytes = send (sock, buffer, buffer_len, 0);

if (send_bytes < 0)
perror (“send”);

return 0;
}

67Mao W07

Receiving Data Stream
int receive_packets(char *buffer, int buffer_len, int *bytes_read){

int left = buffer_len - *bytes_read;

received = recv(sock, buffer + *bytes_read, left, 0);
if (received < 0) {

perror ("Read in read_client");
printf("recv in %s\n", __FUNCTION__);

}

if (received == 0) { /* occurs when other side closes
connection */

return close_connection();
}

*bytes_read += received;
while (*bytes_read > RECORD_LEN) {

process_packet(buffer, RECORD_LEN);
*bytes_read -= RECORD_LEN;
memmove(buffer, buffer + RECORD_LEN, *bytes_read);

}
return 0;

}

68Mao W07

Datagram Sockets

Similar to stream sockets, except:
- Sockets created using SOCK_DGRAM instead of

SOCK_STREAM
- No need for connection establishment and termination
- Uses recvfrom() and sendto() in place of recv()

and send() respectively
- Data sent in packets, not byte-stream oriented

69Mao W07

Socket programming with UDP

UDP: no “connection”
between client and server
no handshaking
sender explicitly attaches
IP address and port of
destination to each packet
server must extract IP
address, port of sender
from received packet

UDP: transmitted data may
be received out of order,
or lost

application viewpoint

UDP provides unreliable transfer
of groups of bytes (“datagrams”)

between client and server

70Mao W07

How to handle multiple connections?

Where do we get incoming data?
- Stdin (typically keyboard input)
- All stream, datagram sockets
- Asynchronous arrival, program doesn’t know when data

will arrive
Solution: I/O multiplexing using select ()

- Coming up soon
Solution: I/O multiplexing using polling

- Very inefficient
Solution: multithreading

- More complex, requires mutex, semaphores, etc.
- Not covered

71Mao W07

I/O Multiplexing: Polling

int opts = fcntl (sock, F_GETFL);
if (opts < 0) {

perror ("fcntl(F_GETFL)");
abort ();

}
opts = (opts | O_NONBLOCK);
if (fcntl (sock, F_SETFL, opts) < 0) {

perror ("fcntl(F_SETFL)");
abort ();

}
while (1) {

if (receive_packets(buffer, buffer_len, &bytes_read) != 0) {
break;

}
if (read_user(user_buffer, user_buffer_len,

&user_bytes_read) != 0) {
break;

}
}

get data
from
socket

get
user
input

first get current
socket option settings

then adjust settings

finally store settings
back

72Mao W07

I/O Multiplexing: Select (1)

Select()
- Wait on multiple file descriptors/sockets and timeout
- Application does not consume CPU cycles while waiting
- Return when file descriptors/sockets are ready to be

read or written or they have an error, or timeout
exceeded

Advantages
- Simple
- More efficient than polling

Disadvantages
- Does not scale to large number of file

descriptors/sockets
- More awkward to use than it needs to be

73Mao W07

I/O Multiplexing: Select (2)
fd_set read_set;
struct timeval time_out;
while (1) {

FD_ZERO (read_set);
FD_SET (stdin, read_set); /* stdin is typically 0 */
FD_SET (sock, read_set);
time_out.tv_usec = 100000; time_out.tv_sec = 0;
select_retval = select(MAX(stdin, sock) + 1, &read_set, NULL,

NULL, &time_out);
if (select_retval < 0) {

perror ("select");
abort ();

}
if (select_retval > 0) {

if (FD_ISSET(sock, read_set)) {
if (receive_packets(buffer, buffer_len, &bytes_read) != 0) {

break;
}

if (FD_ISSET(stdin, read_set)) {
if (read_user(user_buffer, user_buffer_len,

&user_bytes_read) != 0) {
break;

}
}

}
}

set up
parameters
for select()

run select()

interpret
result

74Mao W07

Common Mistakes + Hints

Common mistakes:
- C programming

• Use gdb
• Use printf for debugging, remember to do
fflush(stdout);

- Byte-ordering
- Use of select()
- Separating records in TCP stream
- Not knowing what exactly gets transmitted on the wire

• Use tcpdump / Ethereal
Hints:

- Use man pages (available on the web too)
- Check out WWW, programming books

