
1Mao W07

Transport Layer

EECS 489 Computer Networks
http://www.eecs.umich.edu/courses/eecs489/w07

Z. Morley Mao
Wednesday Jan 24, 2007

Acknowledgement: Some slides taken from Kurose&Ross and Katz&Stoica

2Mao W07

Adminstrivia

Homework 1 was due yesterday – 1/23
- You can use your late days

PA1 has been posted
- A simplified Web server
- You need to find a project partner for this assignment
- If you want to work in groups of three or by yourself,

please email us to get permission.

Reading assignment for this week
- Chapter 3 of the book
- You should have read Chapter 1 and 2.

3Mao W07

Discussion on email

Why do we have so much spam?
- How would you design the email system to prevent

spam?

How does anonymous email work?

4Mao W07

Discussion on DNS

Is it easy to attack the DNS system?
Why is DNS caching good?
Why is DNS caching bad?
DNS is “exploited” for server load balancing,
how?

- Local DNS servers are usually close to local clients

If you were to design DNS differently today, how
would you?

- Any problems with the current DNS system?

5Mao W07

Discussion on P2P

How would you design a P2P system that is
scalable, decentralized, and guarantees the
location of the files?
One solution: DHT (Distributed Hash Table)

- Guarantees that you can find the file
- Mapping between the file and the node ID
- Consistent hashing function assigns each node and key

an m-bit identifier using SHA-1 base hash function.

6Mao W07

Chord protocol

Consistent hashing function assigns each node
and key an m-bit identifier using SHA-1 base
hash function.
Node’s IP address is hashed.
Identifiers are ordered on a identifier circle
modulo 2m called a chord ring.
succesor(k) = first node whose identifier is >=
identifier of k in identifier space.

7Mao W07

Chord protocol
For m = 6, # of identifiers is 64.
The following Chord ring has 10

nodes and stores 5 keys.
The successor of key 10 is node 14.

6

1

2

6

0

4

26

5

1

3

7

2
identifier

circle

identifier

node

X key

successor(1) = 1

successor(2) = 3successor(6) = 0

8Mao W07

IP Addressing

32-bit number in dotted-quad notation (12.34.158.5)

Divided into network & host portions (left and right)

12.34.158.0/24 is a 24-bit prefix with 28 addresses

00001100 00100010 10011110 00000101

Network (24 bits) Host (8 bits)

12 34 158 5

9Mao W07

Some History:
Why Dotted-Quad Notation?

In the olden days…
- Class A: 0*

• Very large /8 blocks (e.g., MIT has 18.0.0.0/8)
- Class B: 10*

• Large /16 blocks (e.g,. UM has 141.213.0.0/16)
- Class C: 110*

• Small /24 blocks (e.g., AT&T Labs has 192.20.225.0/24)
- Class D: 1110*

• Multicast groups
- Class E: 11110*

• Reserved for future use (sounds a bit scary…)
And then, address space became scarce…

10Mao W07

Classless Inter-Domain Routing
(CIDR)

IP Address : 12.4.0.0 IP Mask: 255.254.0.0

00001100 00000100 00000000 00000000

11111111 11111110 00000000 00000000

Address

Mask

for hosts Network Prefix

Use two 32-bit numbers to represent a network.
Network number = IP address + Mask

Usually written as 12.4.0.0/15

11Mao W07

CIDR =
Hierarchy in Address Allocation

12.0.0.0/8

12.0.0.0/16

12.254.0.0/16

12.1.0.0/16
12.2.0.0/16
12.3.0.0/16

:
:
:12.253.0.0/16

12.3.0.0/24
12.3.1.0/24

:
:

12.3.254.0/24

12.253.0.0/19
12.253.32.0/19
12.253.64.0/19
12.253.96.0/19
12.253.128.0/19
12.253.160.0/19
12.253.192.0/19

:
:
:

Prefixes are key to Internet scalability
- Address allocation by ARIN/RIPE/APNIC and by ISPs
- Routing protocols and packet forwarding based on prefixes
- Today, routing tables contain ~150,000-200,000 prefixes

12Mao W07

Figuring Out
Who Owns an Address

Address registries
- Public record of address allocations
- ISPs should update when giving addresses to

customers
- However, records are notoriously out-of-date

Ways to query
- UNIX: “whois –h whois.arin.net 128.112.136.35”
- http://www.arin.net/whois/
- http://www.geektools.com/whois.php
- …

13Mao W07

Example Output for
141.213.4.5 (galileo.eecs.umich.edu)

OrgName: University of Michigan
OrgID: UNIVER-118
Address: IT Communications Services
Address: 4251 Plymouth Road
City: Ann Arbor
StateProv: MI
PostalCode: 48105-2785
Country: US

NetRange: 141.213.0.0 - 141.213.255.255
CIDR: 141.213.0.0/16
NetName: UMNET3
NetHandle: NET-141-213-0-0-1
Parent: NET-141-0-0-0-0
NetType: Direct Assignment
NameServer: SRVR8.ENGIN.UMICH.EDU
NameServer: SRVR7.ENGIN.UMICH.EDU
NameServer: DNS2.ITD.UMICH.EDU

14Mao W07

There is more…
Comment: Abuse contact for 141.213.128.0/17 is abuse@umich.edu.
Comment: For DMCA info see http://www.umich.edu/~itua/copyright/
RegDate: 1990-08-02
Updated: 2003-03-27

AbuseHandle: CEAC-ARIN
AbuseName: College of Engineering Abuse Contact
AbusePhone: +1-734-936-2486
AbuseEmail: abuse@engin.umich.edu

TechHandle: PMK5-ARIN
TechName: Killey, Paul M.
TechPhone: +1-734-763-4910
TechEmail: paul@engin.umich.edu

OrgTechHandle: UA11-ORG-ARIN
OrgTechName: UMnet Administration
OrgTechPhone: +1-734-647-4200
OrgTechEmail: umnet-admin@umich.edu

15Mao W07

Longest Prefix Match Forwarding

Forwarding tables in IP routers
- Maps each IP prefix to next-hop link(s)

Destination-based forwarding
- Packet has a destination address
- Router identifies longest-matching prefix
- Cute algorithmic problem: very fast lookups

4.0.0.0/8
4.83.128.0/17
12.0.0.0/8
12.34.158.0/24
126.255.103.0/24

12.34.158.5
destination

forwarding table

Serial0/0.1
outgoing link

16Mao W07

How are packets forwarded?

Routers have forwarding tables
- Map prefix to outgoing link(s)

Entries can be statically configured
- E.g., “map 12.34.158.0/24 to Serial0/0.1”

But, this doesn’t adapt
- To failures
- To new equipment
- To the need to balance load
- …

That is where routing protocols come in… [more
on this in the next lectures]

17Mao W07

Discussions

IP address space scarcity
- What can we do about it?

Increased IP address fragmentation
Does an IP address identify the actual user?
How does one achieve mobility while maintaining
the same IP address?

18Mao W07

I/O Models

Five different I/O models
- Blocking I/O
- Nonblocking I/O
- I/O multiplexing (select and poll)

• Threads with blocking I/O
- Signal driven I/O (SIGIO)
- Asynchronous I/O (aio_* functions)

• Not widely supported

Blocking vs. nonblocking (system call)
- Whether the system call blocks until data is ready

Synchronous vs. asynchronous (I/O operation)
- Whether the I/O operation causes requesting process to

be blocked

Synchronous

19Mao W07

Blocking I/O Model

Application Kernel
recvfrom No datagram readySystem call

datagram ready
copy datagram

copy complete
process

datagram

Return OK

Process
blocks

Wait
for
data

Copy
data
from

Kernel
to

user

20Mao W07

Nonblocking I/O Model

Application Kernel
recvfrom No datagram readySystem call

datagram ready
copy datagram

copy complete
process

datagram

Return OK

Process
repeatedly

calls
recvfrom
(polling)

recvfrom

EAGAIN
System call

EAGAIN
recvfrom

System call

Wait
for
data

Copy
data
from

Kernel
to

user

21Mao W07

I/O Mutiplexing Model

Application Kernel
select No datagram readySystem call

datagram ready
copy datagram

copy complete
process

datagram

Return OK

Process
blocks,
waiting
for one

of sockets
to be

readable
recvfrom

System call

Wait
for
data

Copy
data
from

kernel
to

user

Return OK

Process
blocks,

while data
copied

into appl
buffer

22Mao W07

Signal-driven I/O Model
Application Kernel

Establish SIGIO
signal handler

sigaction
system call

datagram ready
copy datagram

copy complete
process

datagram

Return OK

Process
continues
executing

recvfrom
System call

Wait
for
data

Copy
data
from

kernel
to

user

deliver SIGIO

Process
blocks,

while data
copied

into appl
buffer

signal handler

23Mao W07

Asynchronous I/O Model
Application Kernel

aio_read
system call

datagram ready
copy datagram

copy complete
process

datagram

deliver signal

Process
continues
executing

Wait
for
data

Copy
data
from

kernel
to

user

return
No datagram ready

specified in aio_read

24Mao W07

Comparison

initiate

notification

notification
initiate

complete

check

ready
initiate

complete

check
check
check
check
check
check

complete

initiate

complete

asynchrono
us I/O

signal-
driven I/O

I/O
multiplexing

nonblockingblocking

Wait
for
data

Copy
data
from

kernel
to

user

first phase handled differently,
second phase is the same: blocked in call to recvfrom

blocked

blocked

blocked
blocked

blocked

handles both
phases

25Mao W07

Top-down

New approach (E.g., Kurose & Ross) –
start from the application layer all the
way down to the physical layer
Advantages – goals are very clear
start from application needs
Disadvantages – harder to understand
some assumptions made about lower
layers (e.g., packet losses in the
Internet are because of congestion)

Network
(IP)

Application

Transport

Link

Physical

26Mao W07

Transport Layer

Our goals:
understand principles
behind transport layer
services:

- multiplexing/demultiple
xing

- reliable data transfer
- flow control
- congestion control

learn about transport
layer protocols in the
Internet:

- UDP: connectionless
transport

- TCP: connection-
oriented transport

- TCP congestion control

27Mao W07

Transport services and protocols
provide logical communication
between app processes running
on different hosts
transport protocols run in end
systems
- send side: breaks app

messages into segments,
passes to network layer

- rcv side: reassembles
segments into messages,
passes to app layer

more than one transport
protocol available to apps
- Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

28Mao W07

Transport vs. network layer

network layer: logical
communication between
hosts
transport layer: logical
communication between
processes

- relies on, enhances,
network layer services

Q: what is an example
property that network
layer does not have,
transport layer
provides? And vice
versa?

Household analogy:
12 kids sending letters to 12 kids

processes = kids
app messages = letters in
envelopes
hosts = houses
transport protocol = Ann and Bill
network-layer protocol = postal
service

29Mao W07

Internet transport-layer protocols
Reliable, in-order delivery
(TCP)

- congestion control
- flow control
- connection setup

Unreliable, unordered
delivery: UDP

- no-frills extension of “best-
effort” IP

Services not available:
- delay guarantees
- bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

30Mao W07

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at send host:

31Mao W07

How demultiplexing works

host receives IP datagrams
- each datagram has

source IP address,
destination IP address

- each datagram carries 1
transport-layer segment

- each segment has
source, destination port
number
(recall: well-known port
numbers for specific
applications)

host uses IP addresses &
port numbers to direct
segment to appropriate
socket

source port # dest port #

32 bits

application
data

(message)

other header fields

TCP/UDP segment format

32Mao W07

Connectionless demultiplexing

Create sockets with port
numbers:

DatagramSocket mySocket1 =
new DatagramSocket(99111);

DatagramSocket mySocket2 =
new DatagramSocket(99222);

UDP socket identified by
two-tuple:

(dest IP address, dest port number)

When host receives UDP
segment:

- checks destination port
number in segment

- directs UDP segment to
socket with that port number

IP datagrams with different
source IP addresses
and/or source port
numbers directed to same
socket

33Mao W07

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P2

client
IP: A

P1P1P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

SP provides “return address”

34Mao W07

Connection-oriented demux

TCP socket identified by
4-tuple:

- source IP address
- source port number
- dest IP address
- dest port number

Recv host uses all four
values to direct segment
to appropriate socket

Server host may support
many simultaneous TCP
sockets:

- each socket identified by its
own 4-tuple

Web servers have different
sockets for each
connecting client

- non-persistent HTTP will
have different socket for
each request

35Mao W07

Connection-oriented demux
(cont)

Client
IP:B

P1

client
IP: A

P1P2P4

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P5 P6 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

36Mao W07

Connection-oriented demux:
Threaded Web Server

Client
IP:B

P1

client
IP: A

P1P2

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P4 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

37Mao W07

UDP: User Datagram Protocol
[RFC 768]

“no frills,” “bare bones”
Internet transport protocol
“best effort” service, UDP
segments may be:

- lost
- delivered out of order to

app
connectionless:

- no handshaking between
UDP sender, receiver

- each UDP segment
handled independently of
others

Why is there a UDP?
no connection establishment
(which can add delay)
simple: no connection state
at sender, receiver
small segment header
no congestion control: UDP
can blast away as fast as
desired

38Mao W07

UDP
Often used for streaming
multimedia apps
- loss tolerant
- rate sensitive

Other UDP uses
- DNS
- SNMP

Reliable transfer over UDP:
add reliability at application
layer
- application-specific error

recovery!

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

39Mao W07

UDP checksum

Sender:
treat segment contents
as sequence of 16-bit
integers
checksum: addition (1’s
complement sum) of
segment contents
sender puts checksum
value into UDP
checksum field

Receiver:
compute checksum of received
segment
check if computed checksum
equals checksum field value:

- NO - error detected
- YES - no error detected. But

maybe errors nonetheless?
More later ….

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

40Mao W07

Internet Checksum Example

Note
- When adding numbers, a carryout from the most

significant bit needs to be added to the result

Example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

41Mao W07

Principles of Reliable data transfer
important in app., transport, link layers
top-10 list of important networking topics!

characteristics of unreliable channel will
determine complexity of reliable data transfer
protocol (rdt)

42Mao W07

Reliable data transfer:
getting started

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to

deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by
rdt to deliver data to upper

43Mao W07

Reliable data transfer:
getting started

We’ll:
incrementally develop sender, receiver sides of reliable data
transfer protocol (rdt)
consider only unidirectional data transfer

- but control info will flow on both directions!
use finite state machines (FSM) to specify sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this
“state” next state
uniquely determined
by next event

event
actions

44Mao W07

Rdt1.0:
reliable transfer over a reliable channel

underlying channel perfectly reliable
- no bit errors
- no loss of packets

separate FSMs for sender, receiver:
- sender sends data into underlying channel
- receiver read data from underlying channel

Wait for
call from
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)
extract (packet,data)
deliver_data(data)

Wait for
call from

below

rdt_rcv(packet)

sender receiver

45Mao W07

Rdt2.0: channel with bit errors
Underlying channel may flip bits in packet

- checksum to detect bit errors

The question: how to recover from errors:
- acknowledgements (ACKs): receiver explicitly tells sender that

pkt received OK
- negative acknowledgements (NAKs): receiver explicitly tells

sender that pkt had errors
- sender retransmits pkt on receipt of NAK

New mechanisms in rdt2.0 (beyond rdt1.0):
- error detection
- receiver feedback: control msgs (ACK,NAK) rcvr->sender

46Mao W07

rdt2.0: FSM specification

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below

sender

receiverrdt_send(data)

Λ

47Mao W07

rdt2.0: operation with no errors

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below

rdt_send(data)

Λ

48Mao W07

rdt2.0: error scenario

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below

rdt_send(data)

Λ

49Mao W07

rdt2.0 has a fatal flaw!

What happens if
ACK/NAK corrupted?
sender doesn’t know what
happened at receiver!
can’t just retransmit:
possible duplicate

Handling duplicates:
sender adds sequence
number to each pkt
sender retransmits current
pkt if ACK/NAK garbled
receiver discards (doesn’t
deliver up) duplicate pkt

Sender sends one packet,
then waits for receiver
response

stop and wait

50Mao W07

rdt2.1: sender, handles garbled
ACK/NAKs

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for
ACK or
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

Wait for
call 1 from

above

Wait for
ACK or
NAK 1

Λ
Λ

51Mao W07

rdt2.1: receiver, handles garbled
ACK/NAKs

Wait for
0 from
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for
1 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

52Mao W07

rdt2.1: discussion

Sender:
seq # added to pkt
two seq. #’s (0,1) will
suffice. Why?
must check if received
ACK/NAK corrupted
twice as many states

- state must “remember”
whether “current” pkt has
0 or 1 seq. #

Receiver:
must check if received
packet is duplicate

- state indicates whether 0
or 1 is expected pkt seq #

note: receiver can not
know if its last ACK/NAK
received OK at sender

53Mao W07

rdt2.2: a NAK-free protocol

same functionality as rdt2.1, using ACKs only
instead of NAK, receiver sends ACK for last pkt received OK

- receiver must explicitly include seq # of pkt being ACKed
duplicate ACK at sender results in same action as NAK: retransmit
current pkt

54Mao W07

rdt2.2: sender, receiver fragments

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

Wait for
ACK

0
sender FSM

fragment

Wait for
0 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)
receiver FSM

fragment

Λ

55Mao W07

rdt3.0: channels with errors and
loss

New assumption: underlying
channel can also lose
packets (data or ACKs)

- checksum, seq. #, ACKs,
retransmissions will be of
help, but not enough

Approach: sender waits
“reasonable” amount of time for
ACK
retransmits if no ACK received in
this time
if pkt (or ACK) just delayed (not
lost):

- retransmission will be
duplicate, but use of seq. #’s
already handles this

- receiver must specify seq # of
pkt being ACKed

requires countdown timer

56Mao W07

rdt3.0 sender
sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait
for

ACK0

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

Wait for
call 1 from

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,0))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for
call 0from

above

Wait
for

ACK1

Λ
rdt_rcv(rcvpkt)

Λ
Λ

Λ

57Mao W07

rdt3.0 in action

58Mao W07

rdt3.0 in action

59Mao W07

Performance of rdt3.0

rdt3.0 works, but performance stinks
example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

Ttransmit = 8kb/pkt
10**9 b/sec = 8 microsec

- U sender: utilization – fraction of time sender busy sending
- 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
- network protocol limits use of physical resources!

U
sender =

.008
30.008

= 0.00027 L / R
RTT + L / R

=

L (packet length in bits)
R (transmission rate, bps) =

60Mao W07

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send
ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender =

.008
30.008

= 0.00027 L / R
RTT + L / R

=

61Mao W07

Pipelined protocols
Pipelining: sender allows multiple, “in-flight”, yet-to-be-

acknowledged pkts
- range of sequence numbers must be increased
- buffering at sender and/or receiver

Two generic forms of pipelined protocols: go-Back-N, selective repeat

62Mao W07

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U
sender =

.024
30.008

= 0.0008 3 * L / R
RTT + L / R

=

Increase utilization
by a factor of 3!

63Mao W07

Go-Back-N
Sender:

k-bit seq # in pkt header
“window” of up to N, consecutive unack’ed pkts allowed

ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
- may deceive duplicate ACKs (see receiver)

timer for each in-flight pkt
timeout(n): retransmit pkt n and all higher seq # pkts in window

64Mao W07

GBN: sender extended FSM

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else

start_timer

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

Λ

65Mao W07

GBN: receiver extended FSM

ACK-only: always send ACK for correctly-received pkt with highest in-
order seq #

- may generate duplicate ACKs
- need only remember expectedseqnum

out-of-order pkt:
- discard (don’t buffer) -> no receiver buffering!
- Re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)
default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =

make_pkt(expectedseqnum,ACK,chksum)

Λ

66Mao W07

GBN in action

67Mao W07

Selective Repeat
receiver individually acknowledges all correctly received pkts

- buffers pkts, as needed, for eventual in-order delivery to upper
layer

sender only resends pkts for which ACK not received
- sender timer for each unACKed pkt

sender window
- N consecutive seq #’s
- again limits seq #s of sent, unACKed pkts

68Mao W07

Selective repeat:
sender, receiver windows

69Mao W07

Selective repeat

data from above :
if next available seq # in
window, send pkt

timeout(n):
resend pkt n, restart timer

ACK(n) in
[sendbase,sendbase+N]:

mark pkt n as received
if n smallest unACKed pkt,
advance window base to
next unACKed seq #

sender
pkt n in [rcvbase, rcvbase+N-1]

send ACK(n)
out-of-order: buffer
in-order: deliver (also deliver
buffered, in-order pkts), advance
window to next not-yet-received
pkt

pkt n in [rcvbase-N,rcvbase-1]

ACK(n)
otherwise:

ignore

receiver

70Mao W07

Selective repeat in action

71Mao W07

Selective repeat:
dilemma

Example:
seq #’s: 0, 1, 2, 3
window size=3

receiver sees no
difference in two
scenarios!
incorrectly passes
duplicate data as new in
(a)

Q: what relationship
between seq # size and
window size?

