
1Mao W07

TCP

EECS 489 Computer Networks
http://www.eecs.umich.edu/courses/eecs489/w07

Z. Morley Mao
Wednesday Jan 31, 2007

Acknowledgement: Some slides taken from Kurose&Ross and Katz&Stoica

2Mao W07

TCP: Overview
RFCs: 793, 1122, 1323, 2018, 2581

full duplex data:
- bi-directional data flow in

same connection
- MSS: maximum segment size

connection-oriented:
- handshaking (exchange of

control msgs) init’s sender,
receiver state before data
exchange

flow controlled:
- sender will not overwhelm

receiver

point-to-point:
- one sender, one receiver

reliable, in-order byte steam:
- no “message boundaries”

pipelined:
- TCP congestion and flow

control set window size
send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

3Mao W07

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

4Mao W07

TCP seq. #’s and ACKs

Seq. #’s:
- byte stream

“number” of first byte
in segment’s data

ACKs:
- seq # of next byte

expected from other
side

- cumulative ACK
Q: how receiver handles

out-of-order segments
- A: TCP spec doesn’t

say, - up to
implementor

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario

5Mao W07

TCP Round Trip Time and Timeout
Q: how to set TCP timeout

value?
longer than RTT

- but RTT varies
too short: premature timeout

- unnecessary
retransmissions

too long: slow reaction to
segment loss

Q: how to estimate RTT?
SampleRTT: measured time from
segment transmission until ACK receipt

- ignore retransmissions
SampleRTT will vary, want estimated
RTT “smoother”

- average several recent
measurements, not just current
SampleRTT

6Mao W07

TCP Round Trip Time and Timeout
EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

Exponential weighted moving average
influence of past sample decreases exponentially fast
typical value: α = 0.125

7Mao W07

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

8Mao W07

TCP Round Trip Time and Timeout
Setting the timeout

EstimtedRTT plus “safety margin”
- large variation in EstimatedRTT -> larger safety margin

first estimate of how much SampleRTT deviates from EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-β)*DevRTT +
β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

Then set timeout interval:

9Mao W07

TCP reliable data transfer

TCP creates rdt service on
top of IP’s unreliable
service
Pipelined segments
Cumulative acks
TCP uses single
retransmission timer

Retransmissions are
triggered by:

- timeout events
- duplicate acks

Initially consider simplified
TCP sender:

- ignore duplicate acks
- ignore flow control,

congestion control

10Mao W07

TCP sender events:
data rcvd from app:

Create segment with seq #
seq # is byte-stream number
of first data byte in segment
start timer if not already
running (think of timer as for
oldest unacked segment)
expiration interval:
TimeOutInterval

timeout:
retransmit segment that
caused timeout
restart timer

Ack rcvd:
If acknowledges previously
unacked segments

- update what is known to be
acked

- start timer if there are
outstanding segments

11Mao W07

TCP
sender
(simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)

start timer
pass segment to IP
NextSeqNum = NextSeqNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with

smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

} /* end of loop forever */

Comment:
• SendBase-1: last
cumulatively
ack’ed byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

12Mao W07

TCP: retransmission scenarios
Host A

Seq=100, 20 bytes data

ACK=100

time
premature timeout

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

Se
q=

92
 t

im
eo

ut

ACK=120

Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

Se
q=

92
 t

im
eo

ut
SendBase

= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100

13Mao W07

TCP retransmission scenarios (more)
Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120

14Mao W07

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment startsat lower end of gap

15Mao W07

Fast Retransmit

Time-out period often
relatively long:

- long delay before
resending lost packet

Detect lost segments via
duplicate ACKs.

- Sender often sends many
segments back-to-back

- If segment is lost, there
will likely be many
duplicate ACKs.

If sender receives 3 ACKs for
the same data, it supposes
that segment after ACKed data
was lost:

- fast retransmit: resend
segment before timer expires

16Mao W07

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
}

Fast retransmit algorithm:

a duplicate ACK for
already ACKed segment

fast retransmit

17Mao W07

TCP Flow Control

receive side of TCP
connection has a receive
buffer:

speed-matching service:
matching the send rate to the
receiving app’s drain rate

app process may be slow at
reading from buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control

18Mao W07

TCP Flow control: how it works

(Suppose TCP receiver discards
out-of-order segments)
spare room in buffer

= RcvWindow
= RcvBuffer-[LastByteRcvd -

LastByteRead]

Rcvr advertises spare room
by including value of
RcvWindow in segments
Sender limits unACKed data
to RcvWindow

- guarantees receive buffer
doesn’t overflow

19Mao W07

TCP Connection Management

Recall: TCP sender, receiver
establish “connection” before
exchanging data segments
initialize TCP variables:

- seq. #s
- buffers, flow control info

(e.g. RcvWindow)
client: connection initiator
Socket clientSocket = new
Socket("hostname","port

number");

server: contacted by client
Socket connectionSocket =
welcomeSocket.accept();

Three way handshake:
Step 1: client host sends TCP

SYN segment to server
- specifies initial seq #
- no data

Step 2: server host receives SYN,
replies with SYNACK segment

- server allocates buffers
- specifies server initial seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

20Mao W07

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system
sends TCP FIN control
segment to server

Step 2: server receives FIN,
replies with ACK. Closes
connection, sends FIN.

client

FIN

server

ACK

ACK

FIN

close

close

closed

ti
m

ed
 w

ai
t

21Mao W07

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

- Enters “timed wait” - will
respond with ACK to
received FINs

Step 4: server, receives ACK.
Connection closed.

Note: with small modification,
can handle simultaneous
FINs.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

ti
m

ed
 w

ai
t

closed

22Mao W07

TCP Connection Management
(cont)

TCP client
lifecycle

TCP server
lifecycle

23Mao W07

Principles of Congestion Control

Congestion:
informally: “too many sources sending too much data too
fast for network to handle”
different from flow control!
manifestations:

- lost packets (buffer overflow at routers)
- long delays (queueing in router buffers)

a top-10 problem!

24Mao W07

Causes/costs of congestion:
scenario 1

two senders, two
receivers
one router, infinite
buffers
no retransmission

large delays when
congested
maximum
achievable
throughput

unlimited shared
output link buffers

Host A
λin : original data

Host B

λout

25Mao W07

Causes/costs of congestion:
scenario 2

one router, finite buffers
sender retransmission of lost packet

finite shared output
link buffers

Host A λin : original data

Host B

λout

λ'in : original data, plus
retransmitted data

26Mao W07

Causes/costs of congestion:
scenario 2

always: (goodput)

“perfect” retransmission only when loss:

retransmission of delayed (not lost) packet makes larger (than
perfect case) for same

λ
in

λout=

λ
in

λout>
λ

in
λout

“costs” of congestion:
more work (retrans) for given “goodput”
unneeded retransmissions: link carries multiple copies of pkt

R/2

R/2
λin

λ o
ut

b.

R/2

R/2
λin

λ o
ut

a.

R/2

R/2
λin

λ o
ut

c.

R/4

R/3

27Mao W07

Causes/costs of congestion:
scenario 3

four senders
multihop paths
timeout/retransmit

λ
in

Q: what happens as
and increase ?λ

in

finite shared output
link buffers

Host A
λin : original data

Host B

λout

λ'in : original data, plus
retransmitted data

28Mao W07

Causes/costs of congestion:
scenario 3

Another “cost” of congestion:
when packet dropped, any “upstream transmission capacity
used for that packet was wasted!

H
o
s
t
A

H
o
s
t
B

λ
o
u

t

29Mao W07

Approaches towards congestion
control

End-end congestion control:
no explicit feedback from
network
congestion inferred from end-
system observed loss, delay
approach taken by TCP

Network-assisted congestion
control:
routers provide feedback to
end systems

- single bit indicating
congestion (SNA, DECbit,
TCP/IP ECN, ATM)

- explicit rate sender
should send at

Two broad approaches towards congestion control:

30Mao W07

Case study: ATM ABR congestion
control

ABR: available bit rate:
“elastic service”
if sender’s path
“underloaded”:

- sender should use
available bandwidth

if sender’s path congested:
- sender throttled to

minimum guaranteed
rate

RM (resource management)
cells:
sent by sender, interspersed with
data cells
bits in RM cell set by switches
(“network-assisted”)

- NI bit: no increase in rate
(mild congestion)

- CI bit: congestion indication
RM cells returned to sender by
receiver, with bits intact

31Mao W07

Case study: ATM ABR congestion
control

two-byte ER (explicit rate) field in RM cell
- congested switch may lower ER value in cell
- sender’ send rate thus minimum supportable rate on path

EFCI bit in data cells: set to 1 in congested switch
- if data cell preceding RM cell has EFCI set, sender sets CI bit in

returned RM cell

32Mao W07

TCP Congestion Control

end-end control (no network assistance)
sender limits transmission:
LastByteSent-LastByteAcked

≤ CongWin

Roughly,

CongWin is dynamic, function of
perceived network congestion

How does sender perceive
congestion?
loss event = timeout or 3
duplicate acks
TCP sender reduces rate
(CongWin) after loss event

three mechanisms:
- AIMD
- slow start
- conservative after timeout

events

rate = CongWin
RTT Bytes/sec

33Mao W07

TCP AIMD

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

multiplicative decrease:
cut CongWin in half
after loss event

additive increase: increase
CongWin by 1 MSS every
RTT in the absence of loss
events: probing

Long-lived TCP connection

34Mao W07

TCP Slow Start

When connection begins,
CongWin = 1 MSS

- Example: MSS = 500 bytes &
RTT = 200 msec

- initial rate = 20 kbps
available bandwidth may be >>
MSS/RTT

- desirable to quickly ramp up to
respectable rate

When connection begins,
increase rate exponentially fast
until first loss event

35Mao W07

TCP Slow Start (more)

When connection begins,
increase rate exponentially
until first loss event:

- double CongWin every
RTT

- done by incrementing
CongWin for every ACK
received

Summary: initial rate is
slow but ramps up
exponentially fast

Host A

one segment

RT
T

Host B

time

two segments

four segments

36Mao W07

Refinement

After 3 dup ACKs:
- CongWin is cut in half
- window then grows linearly

But after timeout event:
- CongWin instead set to 1 MSS;
- window then grows exponentially
- to a threshold, then grows linearly

• 3 dup ACKs indicates
network capable of
delivering some segments
• timeout before 3 dup
ACKs is “more alarming”

Philosophy:

37Mao W07

Refinement (more)

Q: When should
the exponential
increase switch
to linear?

A: When CongWin
gets to 1/2 of its
value before
timeout.

Implementation:
Variable Threshold
At loss event, Threshold is
set to 1/2 of CongWin just
before loss event

38Mao W07

Summary: TCP Congestion
Control

When CongWin is below Threshold, sender in slow-
start phase, window grows exponentially.

When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

When a triple duplicate ACK occurs, Threshold set
to CongWin/2 and CongWin set to Threshold.

When timeout occurs, Threshold set to CongWin/2
and CongWin is set to 1 MSS.

39Mao W07

TCP sender congestion control

CongWin and Threshold
not changed

Increment duplicate ACK count
for segment being acked

SS or CADuplicate
ACK

Enter slow startThreshold = CongWin/2,
CongWin = 1 MSS,
Set state to “Slow Start”

SS or CATimeout

Fast recovery,
implementing multiplicative
decrease. CongWin will
not drop below 1 MSS.

Threshold = CongWin/2,
CongWin = Threshold,
Set state to “Congestion
Avoidance”

SS or CALoss event
detected by
triple
duplicate
ACK

Additive increase, resulting
in increase of CongWin by
1 MSS every RTT

CongWin = CongWin+MSS *
(MSS/CongWin)

Congestion
Avoidance
(CA)

ACK receipt
for
previously
unacked
data

Resulting in a doubling of
CongWin every RTT

CongWin = CongWin + MSS,
If (CongWin > Threshold)

set state to “Congestion
Avoidance”

Slow Start
(SS)

ACK receipt
for
previously
unacked
data

CommentaryTCP Sender Action StateEvent

40Mao W07

TCP throughput

What’s the average throughout ot TCP as a
function of window size and RTT?

- Ignore slow start

Let W be the window size when loss occurs.
When window is W, throughput is W/RTT
Just after loss, window drops to W/2, throughput
to W/2RTT.
Average throughout: .75 W/RTT

41Mao W07

TCP Futures

Example: 1500 byte segments, 100ms RTT, want
10 Gbps throughput
Requires window size W = 83,333 in-flight
segments
Throughput in terms of loss rate:

➜ L = 2·10-10 Wow
New versions of TCP for high-speed needed!

LRTT
MSS⋅22.1

42Mao W07

Fairness goal: if K TCP sessions share same bottleneck link of
bandwidth R, each should have average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

TCP Fairness

43Mao W07

Why is TCP fair?
Two competing sessions:

Additive increase gives slope of 1, as throughout increases
multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

Co
nn

ec
ti

on
 2

 t
hr

ou
gh

p u
t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

44Mao W07

Fairness (more)

Fairness and UDP
Multimedia apps often do not
use TCP

- do not want rate throttled by
congestion control

Instead use UDP:
- pump audio/video at

constant rate, tolerate
packet loss

Research area: TCP friendly

Fairness and parallel TCP
connections
nothing prevents app from
opening parallel cnctions between
2 hosts.
Web browsers do this
Example: link of rate R supporting
9 cnctions;

- new app asks for 1 TCP, gets rate
R/10

- new app asks for 11 TCPs, gets
R/2 !

45Mao W07

Delay modeling

Q: How long does it take to receive
an object from a Web server after
sending a request?

Ignoring congestion, delay is
influenced by:
TCP connection establishment
data transmission delay
slow start

Notation, assumptions:
Assume one link between client
and server of rate R
S: MSS (bits)
O: object size (bits)
no retransmissions (no loss, no
corruption)

Window size:
First assume: fixed congestion
window, W segments
Then dynamic window,
modeling slow start

46Mao W07

TCP Delay Modeling:
Slow Start (1)

Now suppose window grows according to slow start

Will show that the delay for one object is:

R
S

R
SRTTP

R
ORTTLatency P)12(2 −−⎥⎦

⎤
⎢⎣
⎡ +++=

where P is the number of times TCP idles at server:

}1,{min −= KQP

- where Q is the number of times the server idles
if the object were of infinite size.

- and K is the number of windows that cover the object.

47Mao W07

TCP Delay Modeling:
Slow Start (2)

RTT

initiate TCP
connection

request
object

first window
= S/R

second wind
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

Example:
• O/S = 15 segments
• K = 4 windows
• Q = 2
• P = min{K-1,Q} = 2

Server idles P=2 times

Delay components:
• 2 RTT for connection
estab and request
• O/R to transmit
object
• time server idles due
to slow start

Server idles:
P = min{K-1,Q} times

48Mao W07

TCP Delay Modeling (3)

R
S

R
SRTTPRTT

R
O

R
SRTT

R
SRTT

R
O

idleTimeRTT
R
O

P

k
P

k

P

p
p

)12(][2

]2[2

2delay

1

1

1

−−+++=

−+++=

++=

−

=

=

∑

∑

th window after the timeidle 2 1 k
R
SRTT

R
S k =⎥⎦

⎤
⎢⎣
⎡ −+

+
−

ementacknowledg receivesserver until

segment send tostartsserver whenfrom time=+ RTT
R
S

 window kth the transmit totime2 1 =−

R
Sk

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

49Mao W07

TCP Delay Modeling (4)

⎥⎥
⎤

⎢⎢
⎡ +=

+≥=

≥−=

≥+++=

≥+++=
−

−

)1(log

)}1(log:{min

}12:{min

}/222:{min
}222:{min

2

2

110

110

S
O

S
Okk

S
Ok

SOk
OSSSkK

k

k

k

L

L

Calculation of Q, number of idles for infinite-size object,
is similar (see HW).

Recall K = number of windows that cover object

How do we calculate K ?

50Mao W07

HTTP Modeling
Assume Web page consists of:

- 1 base HTML page (of size O bits)
- M images (each of size O bits)

Non-persistent HTTP:
- M+1 TCP connections in series
- Response time = (M+1)O/R + (M+1)2RTT + sum of idle times

Persistent HTTP:
- 2 RTT to request and receive base HTML file
- 1 RTT to request and receive M images
- Response time = (M+1)O/R + 3RTT + sum of idle times

Non-persistent HTTP with X parallel connections
- Suppose M/X integer.
- 1 TCP connection for base file
- M/X sets of parallel connections for images.
- Response time = (M+1)O/R + (M/X + 1)2RTT + sum of idle times

51Mao W07

0
2
4
6
8

10
12
14
16
18
20

28
Kbps

100
Kbps

1 Mbps 10
Mbps

non-persistent

persistent

parallel non-
persistent

HTTP Response time (in seconds)
RTT = 100 msec, O = 5 Kbytes, M=10 and X=5

For low bandwidth, connection & response time dominated by
transmission time.
Persistent connections only give minor improvement over parallel
connections.

52Mao W07

0

10

20

30

40

50

60

70

28
Kbps

100
Kbps

1 Mbps 10
Mbps

non-persistent

persistent

parallel non-
persistent

HTTP Response time (in seconds)
RTT =1 sec, O = 5 Kbytes, M=10 and X=5

For larger RTT, response time dominated by TCP establishment
& slow start delays. Persistent connections now give important
improvement: particularly in high delay•bandwidth networks.

