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TCP: Overview   
RFCs: 793, 1122, 1323, 2018, 2581

full duplex data:
- bi-directional data flow in 

same connection
- MSS: maximum segment size

connection-oriented:
- handshaking (exchange of 

control msgs) init’s sender, 
receiver state before data 
exchange

flow controlled:
- sender will not overwhelm 

receiver

point-to-point:
- one sender, one receiver

reliable, in-order byte steam:
- no “message boundaries”

pipelined:
- TCP congestion and flow 

control set window size
send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data
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TCP segment structure

source port # dest port #

32 bits

application
data 

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data 
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

# bytes 
rcvr willing
to accept

counting
by bytes 
of data
(not segments!)

Internet
checksum

(as in UDP)
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TCP seq. #’s and ACKs

Seq. #’s:
- byte stream 

“number” of first byte 
in segment’s data

ACKs:
- seq # of next byte 

expected from other 
side

- cumulative ACK
Q: how receiver handles 

out-of-order segments
- A: TCP spec doesn’t 

say, - up to 
implementor

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types

‘C’

host ACKs
receipt 

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario
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TCP Round Trip Time and Timeout
Q: how to set TCP timeout 

value?
longer than RTT

- but RTT varies
too short: premature timeout

- unnecessary 
retransmissions

too long: slow reaction to 
segment loss

Q: how to estimate RTT?
SampleRTT: measured time from 
segment transmission until ACK receipt

- ignore retransmissions
SampleRTT will vary, want estimated 
RTT “smoother”

- average several recent 
measurements, not just current 
SampleRTT
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TCP Round Trip Time and Timeout
EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

Exponential weighted moving average
influence of past sample decreases exponentially fast
typical value: α = 0.125
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Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T 

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT
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TCP Round Trip Time and Timeout
Setting the timeout

EstimtedRTT plus “safety margin”
- large variation in EstimatedRTT -> larger safety margin

first estimate of how much SampleRTT deviates from EstimatedRTT: 

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-β)*DevRTT +
β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

Then set timeout interval:
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TCP reliable data transfer

TCP creates rdt service on 
top of IP’s unreliable 
service
Pipelined segments
Cumulative acks
TCP uses single 
retransmission timer

Retransmissions are 
triggered by:

- timeout events
- duplicate acks

Initially consider simplified 
TCP sender:

- ignore duplicate acks
- ignore flow control, 

congestion control
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TCP sender events:
data rcvd from app:

Create segment with seq #
seq # is byte-stream number 
of first data byte in  segment
start timer if not already 
running (think of timer as for 
oldest unacked segment)
expiration interval: 
TimeOutInterval

timeout:
retransmit segment that 
caused timeout
restart timer

Ack rcvd:
If acknowledges previously 
unacked segments

- update what is known to be 
acked

- start timer if there are  
outstanding segments
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TCP 
sender
(simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above 
create TCP segment with sequence number NextSeqNum
if (timer currently not running)

start timer
pass segment to IP 
NextSeqNum = NextSeqNum + length(data) 

event: timer timeout
retransmit not-yet-acknowledged segment with 

smallest sequence number
start timer

event: ACK received, with ACK field value of y 
if (y > SendBase) { 

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer 
} 

}  /* end of loop forever */

Comment:
• SendBase-1: last 
cumulatively 
ack’ed byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is 
acked
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TCP: retransmission scenarios
Host A

Seq=100, 20 bytes data

ACK=100

time
premature timeout

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

Se
q=

92
 t

im
eo

ut

ACK=120

Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

Se
q=

92
 t

im
eo

ut
SendBase

= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100
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TCP retransmission scenarios (more)
Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120
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TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other 
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that 
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative 
ACK, ACKing both in-order segments 

Immediately send duplicate ACK, 
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment startsat lower end of gap
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Fast  Retransmit

Time-out period  often 
relatively long:

- long delay before 
resending lost packet

Detect lost segments via 
duplicate ACKs.

- Sender often sends many 
segments back-to-back

- If segment is lost, there 
will likely be many 
duplicate ACKs.

If sender receives 3 ACKs for 
the same data, it supposes 
that segment after ACKed data 
was lost:

- fast retransmit: resend 
segment before timer expires
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event: ACK received, with ACK field value of y 
if (y > SendBase) { 

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer 
} 

else { 
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
}

Fast retransmit algorithm:

a duplicate ACK for 
already ACKed segment

fast retransmit
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TCP Flow Control

receive side of TCP 
connection has a receive 
buffer:

speed-matching service: 
matching the send rate to the 
receiving app’s drain rate

app process may be slow at 
reading from buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control
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TCP Flow control: how it works

(Suppose TCP receiver discards 
out-of-order segments)
spare room in buffer

= RcvWindow
= RcvBuffer-[LastByteRcvd -

LastByteRead]

Rcvr advertises spare room 
by including value of 
RcvWindow in segments
Sender limits unACKed data 
to RcvWindow

- guarantees receive buffer 
doesn’t overflow
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TCP Connection Management

Recall: TCP sender, receiver 
establish “connection” before 
exchanging data segments
initialize TCP variables:

- seq. #s
- buffers, flow control info 

(e.g. RcvWindow)
client: connection initiator
Socket clientSocket = new   
Socket("hostname","port 

number");

server: contacted by client
Socket connectionSocket = 
welcomeSocket.accept();

Three way handshake:
Step 1: client host sends TCP 

SYN segment to server
- specifies initial seq #
- no data

Step 2: server host receives SYN, 
replies with SYNACK segment

- server allocates buffers
- specifies server initial seq. #

Step 3: client receives SYNACK, 
replies with ACK segment, 
which may contain data
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TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system 
sends TCP FIN control 
segment to server

Step 2: server receives FIN, 
replies with ACK. Closes 
connection, sends FIN. 

client

FIN

server

ACK

ACK

FIN

close

close

closed

ti
m

ed
 w

ai
t
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TCP Connection Management (cont.)

Step 3: client receives FIN, 
replies with ACK. 

- Enters “timed wait” - will 
respond with ACK to 
received FINs

Step 4: server, receives ACK.  
Connection closed. 

Note: with small modification, 
can handle simultaneous 
FINs.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

ti
m

ed
 w

ai
t

closed



22Mao W07

TCP Connection Management 
(cont)

TCP client
lifecycle

TCP server
lifecycle
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Principles of Congestion Control

Congestion:
informally: “too many sources sending too much data too 
fast for network to handle”
different from flow control!
manifestations:

- lost packets (buffer overflow at routers)
- long delays (queueing in router buffers)

a top-10 problem!
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Causes/costs of congestion: 
scenario 1

two senders, two 
receivers
one router, infinite 
buffers 
no retransmission

large delays when 
congested
maximum 
achievable 
throughput

unlimited shared 
output link buffers

Host A
λin : original data

Host B

λout
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Causes/costs of congestion: 
scenario 2

one router, finite buffers 
sender retransmission of lost packet

finite shared output 
link buffers

Host A λin : original data

Host B

λout

λ'in : original data, plus 
retransmitted data
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Causes/costs of congestion: 
scenario 2

always:                   (goodput)

“perfect” retransmission only when loss:

retransmission of delayed (not lost) packet makes         larger (than 
perfect case) for same

λ
in

λout=

λ
in

λout>
λ

in
λout

“costs” of congestion:
more work (retrans) for given “goodput”
unneeded retransmissions: link carries multiple copies of pkt

R/2

R/2
λin

λ o
ut

b.

R/2

R/2
λin

λ o
ut

a.

R/2

R/2
λin

λ o
ut

c.

R/4

R/3
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Causes/costs of congestion: 
scenario 3

four senders
multihop paths
timeout/retransmit

λ
in

Q: what happens as      
and     increase ?λ

in

finite shared output 
link buffers

Host A
λin : original data

Host B

λout

λ'in : original data, plus 
retransmitted data
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Causes/costs of congestion: 
scenario 3

Another “cost” of congestion:
when packet dropped, any “upstream transmission capacity 
used for that packet was wasted!

H
o
s
t 
A

H
o
s
t 
B

λ
o
u

t
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Approaches towards congestion 
control

End-end congestion control:
no explicit feedback from 
network
congestion inferred from end-
system observed loss, delay
approach taken by TCP

Network-assisted congestion 
control:
routers provide feedback to 
end systems

- single bit indicating 
congestion (SNA, DECbit, 
TCP/IP ECN, ATM)

- explicit rate sender 
should send at

Two broad approaches towards congestion control:
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Case study: ATM ABR congestion 
control

ABR: available bit rate:
“elastic service”
if sender’s path 
“underloaded”: 

- sender should use 
available bandwidth

if sender’s path congested: 
- sender throttled to 

minimum guaranteed 
rate

RM (resource management) 
cells:
sent by sender, interspersed with 
data cells
bits in RM cell set by switches 
(“network-assisted”) 

- NI bit: no increase in rate 
(mild congestion)

- CI bit: congestion indication
RM cells returned to sender by 
receiver, with bits intact
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Case study: ATM ABR congestion 
control

two-byte ER (explicit rate) field in RM cell
- congested switch may lower ER value in cell
- sender’ send rate thus minimum supportable rate on path

EFCI bit in data cells: set to 1 in congested switch
- if data cell preceding RM cell has EFCI set, sender sets CI bit in 

returned RM cell
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TCP Congestion Control

end-end control (no network assistance)
sender limits transmission:
LastByteSent-LastByteAcked

≤ CongWin

Roughly,

CongWin is dynamic, function of 
perceived network congestion

How does  sender perceive 
congestion?
loss event = timeout or 3 
duplicate acks
TCP sender reduces rate 
(CongWin) after loss event

three mechanisms:
- AIMD
- slow start
- conservative after timeout 

events

rate = CongWin
RTT Bytes/sec
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TCP AIMD

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

multiplicative decrease:
cut CongWin in half 
after loss event

additive increase: increase  
CongWin by 1 MSS every 
RTT in the absence of loss 
events: probing

Long-lived TCP connection
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TCP Slow Start

When connection begins, 
CongWin = 1 MSS

- Example: MSS = 500 bytes & 
RTT = 200 msec

- initial rate = 20 kbps
available bandwidth may be >> 
MSS/RTT

- desirable to quickly ramp up to 
respectable rate

When connection begins, 
increase rate exponentially fast 
until first loss event



35Mao W07

TCP Slow Start (more)

When connection begins, 
increase rate exponentially 
until first loss event:

- double CongWin every 
RTT

- done by incrementing 
CongWin for every ACK 
received

Summary: initial rate is 
slow but ramps up 
exponentially fast

Host A

one segment

RT
T

Host B

time

two segments

four segments
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Refinement

After 3 dup ACKs:
- CongWin is cut in half
- window then grows linearly

But after timeout event:
- CongWin instead set to 1 MSS; 
- window then grows exponentially
- to a threshold, then grows linearly

• 3 dup ACKs indicates 
network capable of 
delivering some segments
• timeout before 3 dup 
ACKs is “more alarming”

Philosophy:
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Refinement (more)

Q: When should 
the exponential 
increase switch 
to linear? 

A: When CongWin
gets to 1/2 of its 
value before 
timeout.

Implementation:
Variable Threshold 
At loss event, Threshold is 
set to 1/2 of CongWin just 
before loss event
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Summary: TCP Congestion 
Control

When CongWin is below Threshold, sender in slow-
start phase, window grows exponentially.

When CongWin is above Threshold, sender is in 
congestion-avoidance phase, window grows linearly.

When a triple duplicate ACK occurs, Threshold set 
to CongWin/2 and CongWin set to Threshold.

When timeout occurs, Threshold set to CongWin/2
and CongWin is set to 1 MSS.
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TCP sender congestion control

CongWin and Threshold 
not changed

Increment duplicate ACK count 
for segment being acked

SS or CADuplicate 
ACK

Enter slow startThreshold = CongWin/2,      
CongWin = 1 MSS,
Set state to “Slow Start”

SS or CATimeout

Fast recovery, 
implementing multiplicative 
decrease. CongWin will 
not drop below 1 MSS.

Threshold = CongWin/2,      
CongWin = Threshold,
Set state to “Congestion 
Avoidance”

SS or CALoss event 
detected by 
triple 
duplicate 
ACK

Additive increase, resulting 
in increase of CongWin by 
1 MSS every RTT

CongWin = CongWin+MSS * 
(MSS/CongWin)

Congestion
Avoidance 
(CA) 

ACK receipt 
for 
previously 
unacked
data

Resulting in a doubling of 
CongWin every RTT

CongWin = CongWin + MSS, 
If (CongWin > Threshold)

set state to “Congestion             
Avoidance”

Slow Start 
(SS)

ACK receipt 
for 
previously 
unacked
data 

CommentaryTCP Sender Action StateEvent 
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TCP throughput

What’s the average throughout ot TCP as a 
function of window size and RTT?

- Ignore slow start

Let W be the window size when loss occurs.
When window is W, throughput is W/RTT
Just after loss, window drops to W/2, throughput 
to W/2RTT. 
Average throughout: .75 W/RTT
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TCP Futures

Example: 1500 byte segments, 100ms RTT, want 
10 Gbps throughput
Requires window size W = 83,333 in-flight 
segments
Throughput in terms of loss rate:

➜ L = 2·10-10  Wow
New versions of TCP for high-speed needed!

LRTT
MSS⋅22.1
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Fairness goal: if K TCP sessions share same bottleneck link of 
bandwidth R, each should have average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP 
connection 2

TCP Fairness
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Why is TCP fair?
Two competing sessions:

Additive increase gives slope of 1, as throughout increases
multiplicative decrease decreases throughput proportionally 

R

R

equal bandwidth share

Connection 1 throughput

Co
nn

ec
ti

on
 2

 t
hr

ou
gh

p u
t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2
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Fairness (more)

Fairness and UDP
Multimedia apps often do not 
use TCP

- do not want rate throttled by 
congestion control

Instead use UDP:
- pump audio/video at 

constant rate, tolerate 
packet loss

Research area: TCP friendly

Fairness and parallel TCP 
connections
nothing prevents app from 
opening parallel cnctions between 
2 hosts.
Web browsers do this 
Example: link of rate R supporting 
9 cnctions; 

- new app asks for 1 TCP, gets rate 
R/10

- new app asks for 11 TCPs, gets 
R/2 !
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Delay modeling

Q: How long does it take to receive 
an object from a Web server after 
sending a request? 

Ignoring congestion, delay is 
influenced by:
TCP connection establishment
data transmission delay
slow start

Notation, assumptions:
Assume one link between client 
and server of rate R
S: MSS (bits)
O: object size (bits)
no retransmissions (no loss, no 
corruption)

Window size:
First assume: fixed congestion 
window, W segments
Then dynamic window, 
modeling slow start
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TCP Delay Modeling: 
Slow Start (1)

Now suppose window grows according to slow start

Will show that the delay for one object is:

R
S

R
SRTTP

R
ORTTLatency P )12(2 −−⎥⎦

⎤
⎢⎣
⎡ +++=

where P is the number of times TCP idles at server:

}1,{min −= KQP

- where Q is the number of times the server idles
if the object were of infinite size.

- and  K is the number of windows that cover the object.
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TCP Delay Modeling: 
Slow Start (2)

RTT

initiate TCP
connection

request
object

first window
= S/R

second wind
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

Example:
• O/S  = 15 segments
• K = 4 windows
• Q = 2
• P = min{K-1,Q} = 2

Server idles P=2 times

Delay components:
• 2 RTT for connection 
estab and request
• O/R to transmit 
object
• time server idles due 
to slow start

Server idles: 
P = min{K-1,Q} times
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TCP Delay Modeling (3)

R
S

R
SRTTPRTT

R
O

R
SRTT

R
SRTT

R
O

idleTimeRTT
R
O

P

k
P

k

P

p
p

)12(][2

]2[2

2delay

1

1

1

−−+++=

−+++=

++=

−

=

=

∑

∑

th window after the  timeidle 2 1 k
R
SRTT

R
S k =⎥⎦

⎤
⎢⎣
⎡ −+

+
−

ementacknowledg receivesserver  until                   

segment  send  tostartsserver   whenfrom time=+ RTT
R
S

 window kth the transmit  totime2 1 =−

R
Sk

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server
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TCP Delay Modeling (4)

⎥⎥
⎤

⎢⎢
⎡ +=

+≥=

≥−=

≥+++=

≥+++=
−

−

)1(log

)}1(log:{min

}12:{min

}/222:{min
}222:{min

2

2

110

110

S
O

S
Okk

S
Ok

SOk
OSSSkK

k

k

k

L

L

Calculation of Q, number  of idles for infinite-size object,
is similar (see HW).

Recall K = number of windows that cover object

How do we calculate K ?
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HTTP Modeling
Assume Web page consists of:

- 1 base HTML page (of size O bits)
- M images (each of size O bits)

Non-persistent HTTP: 
- M+1 TCP connections in series
- Response time = (M+1)O/R + (M+1)2RTT + sum of idle times

Persistent HTTP:
- 2 RTT to request and receive base HTML file
- 1 RTT to request and receive M images
- Response time = (M+1)O/R + 3RTT + sum of idle times

Non-persistent HTTP with X parallel connections
- Suppose M/X integer.
- 1 TCP connection for base file
- M/X sets of parallel connections for images.
- Response time = (M+1)O/R +  (M/X + 1)2RTT + sum of idle times
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0
2
4
6
8

10
12
14
16
18
20

28
Kbps

100
Kbps

1 Mbps 10
Mbps

non-persistent

persistent

parallel non-
persistent

HTTP Response time (in seconds)
RTT = 100 msec, O = 5 Kbytes, M=10 and X=5

For low bandwidth, connection & response time  dominated by 
transmission time.
Persistent connections only give minor improvement over parallel
connections.
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0
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20

30

40
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60

70

28
Kbps

100
Kbps

1 Mbps 10
Mbps

non-persistent

persistent

parallel non-
persistent

HTTP Response time (in seconds)
RTT =1 sec, O = 5 Kbytes, M=10 and X=5

For larger RTT, response time dominated by TCP establishment 
& slow start delays. Persistent connections now give important 
improvement: particularly in high delay•bandwidth networks.


