TCP

EECS 489 Computer Networks
http://www.eecs.umich.edu/courses/eecs489/w07

Z. Morley Mao
Wednesday Jan 31, 2007

Acknowledgement: Some slides taken from Kurose&Ross and Katz&Stoica ~ Mao W07 1

socket

door —

TCP: Overview

RFCs: 793, 1122, 1323, 2018, 2581

point-to-point: = full duplex data:
- one sender, one receiver - bi-directional data flow in

reliable, in-order byte steam: same connection
- no “message boundaries” - MSS: maximum segment size

vipelined: = connection-oriented:

- TCP congestion and flow - handshaking (exchange of

control set window size control msgs) init's sender,
receiver state before data

send & receive buffers exchange

= flow controlled:

- sender will not overwhelm
receiver

) socket
door

receive buffer

) [Segment] —»)

send buffer

Mao W07 2

TCP segment structure

« 32 bits

URG: urgent data
(generally not used)\

source port # | dest port #

valid

PSH: push data now
(generally not used)—

sed

head| not AN} . .
| 1j/UIZPRSF Receive window

W;n), Urg data pnter

RST, SYN, FIN:—
connection estab

[—
Opy(s (variable length)

(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

counting

by bytes

of data

(not segmentsl)

bytes
rcvr willing
to accept

Mao W07 3

Seq. #s:

- byte stream
“‘number” of first byte
in segment’s data

ACKs:

- seq # of next byte
expected from other
side

- cumulative ACK

Q: how receiver handles
out-of-order segments

- A: TCP spec doesn’t
say, - up to
implementor

host ACKs
receipt
of echoed

C

CP seq. #'s and ACKs

. receipt of
" da‘aﬁ‘c 'C', echoes
== back 'C’

simple telnet scenario

Mao W07

Host B @

time

4

TCP Round Trip Time and Timeout

Q: how to set TCP timeout Q: how to estimate RTT?
value? = SampleRTT: measured time from
longer than RTT segment transmission until ACK receipt

- but RTT varies

_ - ignore retransmissions
too short: premature timeout

= SampleRTT will vary, want estimated
- unnecessary RTT “smoother”

retransmissions
too long: slow reaction to - average several recent

segment loss measurements, not just current
SampleRTT

Mao W07 5

TCP Round Trip Time and Timeout

EstimatedRTT = (1- oa)*EstimatedRTT + o*SampleRTT

Exponential weighted moving average
Influence of past sample decreases exponentially fast
typical value: a =0.125

Mao W07

Example RTT estimation:

RTT (milliseconds)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350 -

300

250 -

200 ~

150

100 T T T T T T T T T T T T T T T
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

—— SampleRTT —&—Estimated RTT

Mao W07

TCP Round Trip Time and Timeout

Setting the timeout

EstimtedRTT plus “safety margin”
- large variation in EstimatedRTT -> larger safety margin

first estimate of how much SampleRTT deviates from EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B*|SampleRTT-EstimatedRTT]

(typically, B = 0.25)

Then set timeout interval:

Timeoutlnterval = EstimatedRTT + 4*DevRTT

Mao W07

TCP creates rdt service on
top of IP’s unreliable
service

Pipelined segments
Cumulative acks

TCP uses single
retransmission timer

CP reliable data transfer

Retransmissions are
triggered by:

- timeout events
- duplicate acks
« [nitially consider simplified
TCP sender:

- ignore duplicate acks

- ignore flow control,
congestion control

Mao W07

CP sender events:

data rcvd from app: timeout:
- Create segment with seq # - retransmit segment that
- seq # is byte-stream number caused timeout
of first data byte in segment - restart timer
« start timer if not already Ack rcvd:

running (think of timer as for
oldest unacked segment)

= expiration interval:
TimeOutlInterval

« If acknowledges previously
unacked segments

- update what is known to be
acked

- start timer if there are
outstanding segments

Mao W07 10

NextSeqNum = InitialSeqNum

SendBase = InitialSeqgNum TCP
loop (forever) { sen d er
switch(event) (simplified)

event: data received from application above
create TCP segment with sequence number NextSeqgNum
if (timer currently not running)
start timer
pass segment to IP

NextSegNum = NextSegNum + length(data) Comment:
+ SendBase-1: last
event: timer timeout cumulatively
retransmit not-yet-acknowledged segment with ack'ed byte
smallest sequence number Example:
start timer - SendBase-1 = 71;
= Y
event: ACK received, with ACK field value of y Y= 73,50 'I'he revr
wants 73+ ;

if (y > SendBase
(ySendBase = 1/{ y > SendBase, so
if (there are currently not-yet-acknowledged segments) that new data is

start timer acked

}

} " end of loop forever */

Mao W07 11

SendBase

=100

«—— timeout——

v

time

TCP: retransmission scenarios

lost ACK scenario

Sendbase
= 100
SendBase
=120

SendBase
=120

92 TimeouT—>|

92 timeout—s+— Seq

eq-=

YD)
4
v

time

premature timeout

Mao W07

12

TCP retransmission scenarios (more)

@ Host A Host B @

Se =

A0
Seqg= CcK= i

9100, 59 , PSd
ata
X
loss
120

=120

timeout ——

time
Cumulative ACK scenario

v

Mao W07 13

TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver

TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Immediately send single cumulative
ACK, ACKing both in-order segments

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Arrival of segment that
partially or completely fills gap

Immediate send ACK, provided that
segment startsat lower end of gap

Mao W07 14

Fast Retransmit

= Time-out period often

relatively long:

- long delay before
resending lost packet

Detect lost segments via
duplicate ACKs.

- Sender often sends many
segments back-to-back

- If segment is lost, there
will likely be many
duplicate ACKs.

If sender receives 3 ACKs for
the same data, it supposes
that segment after ACKed data
was lost:

- fast retransmit: resend
segment before timer expires

Mao W07

15

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}

else {
increment count of dup ACKs received fory
if (count of dup ACKs received fory = 3) {
resend segment with sequence numbery

)
/ \

a duplicate ACK for fast retransmit
already ACKed segment

Mao W07 16

CP Flow Control

-flow control
sender won't overflow
receiver's buffer by
transmitting too much,
too fast

receive side of TCP
connection has a receive
buffer:

k— RevWindow —f

7 / i « speed-matching service:
A CP | aplieation matching the send rate to the

/_" process . ’ .
/// receiving app’s drain rate
7227
'|l— RevBuffer —l*

data from
IP

app process may be slow at
reading from buffer

Mao W07 17

data from
IP

CP Flow control:
k— RevWindow —f

7
/ / / _Papplication

/ process
////
'|l— RevBuffer —I‘*

(Suppose TCP receiver discards
out-of-order segments)

= spare room in buffer

= RcvWindow

= RcvBuffer-[LastByteRcvd -
LastByteRead]

how It works

= Rcvr advertises spare room

by including value of
RcvWindow in segments

= Sender limits unACKed data
to RcvWindow

- guarantees receive buffer
doesn’t overflow

Mao W07 18

TCP Connection Management

Recall: TCP sender, receiver Three way handshake:

establish “connection” before _
exchanging data segments Step 1: client host sends TCP

initialize TCP variables: SYN segment to server
- specifies initial seq #

- seq. #s
- buffers, flow control info - Nno data
(e.g. RevWindow) Step 2: server host receives SYN,
. client; connection initiator replies with SYNACK segment
Socket clientSocket = new - server allocates buffers

Socket(**hostname™,"port . o
- specifies server initial seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

number') ;

= server: contacted by client

Socket connectionSocket =
we lcomeSocket.accept();

Mao W07 19

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system
sends TCP FIN control

segment to server

Step 2: server receives FIN,
replies with ACK. Closes
connection, sends FIN.

@ client

close

d wait

2 time

close

FIN

/
/
N

SQPVCF@

Mao W07

close

20

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

- Enters “timed wait” - will
respond with ACK to
received FINs

Step 4: server, receives ACK.
Connection closed.

Note: with small modification,
can handle simultaneous
FINS.

@ client

closing

d wait

2 time

close

FIN

e\WN

ACk

SQPVCF@

closing

closed

Mao W07 21

TCP Connection Management
(cont)

wait 30 seconds

CLOSED

TIME_WAIT

&

recee FIM
send ACK,

FIN_WAIT_2

receive ACK
send nothing

TCP client
lifecycle

client application

initiates a TCP connection

send SYM

SYN_SENT

¥

receive SN & ACK

send ACK

ESTABLISHED

FIN_WAIT_1

client application

initiates close connection

send FIM

receive ACK
send nothing

send FIN

TCP server
lifecycle

CLOSED

server application
creates a listen socket

LAST_ACK

F 3

CLOSE_WAIT

receive FIM
send ACK

LISTEN

receive 37N
send SYM & ACK

A 4
S¥YN_RCVD

receive ACK
send nothing

ESTABLISHED

Principles of Congestion Control

Congestion:

« informally: “too many sources sending too much data too
fast for network to handle”

« different from flow control!
= manifestations:
- lost packets (buffer overflow at routers)
- long delays (queueing in router buffers)
= a top-10 problem!

Mao W07 23

Causes/costs of congestion:

scenario 1
Host A o xout
= two senders, two g original data
receivers
= Ohe rOUter', |nf|n|te Host B unIimit_ed shared
buffe rs ~ output link buffers
= Nno retransmission s
crol = large delays when
: 3 congested
% 3 maximum
< achievable
throughput
H
1
A C/2
in

Mao W07 24

Causes/costs of congestion:

= one router, finite buffers

scenario 2

= sender retransmission of lost packet

Host A

A, : original data

A, . original data, plus
retransmitted data

finite shared output
link buffers

out

Mao W07

25

Causes/costs of congestion:
scenario 2

A=A

- always: i out(goodput)

- “perfect” retransmission only when loss:) >)\

in out
. . /
. retransmission of delayed (not lost) packet makes), larger (than
in
perfect case) for same)
out
RI2 f=--mmmmmmmmmmm oo . R/2 f=-=mmmmmmmmmmmmmmm oo ; R/2
] R _
(<° i &8 (2775 It '
A’Tn R/2 }\':n R/2 A’Tn R/2
b. C.

“costs’ of congestion:
more work (retrans) for given “goodput”
unneeded retransmissions: link carries multiple copies ofm;(a)i(t 26

Mao

Causes/costs of congestion:

scenario 3
?
our senders Q_ what happens as A

= multihop paths in

A 9
- timeout/retransmit and inlNCrease :

Host A -
> A, - original data "

out

A’ original data, plus
retransmitted data

finite shared output
link buffers

Host B

Mao W07

Causes/costs of congestion:
scenario 3

C/2

3 o
<

k!
Ig
Another “cost” of congestion:

when packet dropped, any “upstream transmission capacity
used for that packet was wasted!

Mao W07 28

Approaches towards congestion
control

Two broad approaches towards congestion control:

End-end congestion control: Network-assisted congestion

- no explicit feedback from control:
network = routers provide feedback to
= congestion inferred from end- end systems
system observed loss, delay - single bit indicating
- approach taken by TCP congestion (SNA, DECHhit,

TCP/IP ECN, ATM)

- explicit rate sender
should send at

Mao W07 29

Case study: ATM ABR congestion
control

ABR: available bit rate:
“elastic service”

if sender’s path
“‘underloaded”:

- sender should use
available bandwidth

if sender’s path congested:

- sender throttled to
minimum guaranteed
rate

RM (resource management)
cells:

= sent by sender, interspersed with
data cells

= bits in RM cell set by switches
(“network-assisted”)

- NI bit: no increase in rate
(mild congestion)

- CI bit: congestion indication

« RM cells returned to sender by
receiver, with bits intact

Mao W07 30

Case study: A

source

M ABR congestion

control

I RM C
I:I data

Switch

ells
cells destination

Switch

gyt Wiyt =2

= two-byte ER (explicit rate) field in RM cell
- congested switch may lower ER value in cell
- sender’ send rate thus minimum supportable rate on path
= EFCI bit in data cells: set to 1 in congested switch
- if data cell preceding RM cell has EFCI set, sender sets ClI bit in

returned RM cell

Mao W07

31

CP Congestion Control

end-end control (no network assistance) How does sender perceive

sender limits transmission: congestion?
LastByteSent-LastByteAcked = loss event = timeout or 3
< CongWin duplicate acks

= TCP sender reduces rate
(CongWin) after loss event

three mechanisms:

Roughly,

o _ _ - AIMD
CongWin is dynamic, function of - slow start
perceived network congestion - conservative after imeout
events
CongWin
rate =
RTT Bytes/sec

Mao W07 32

CP AIMD

muItiplicative_de_crease: additive Increase: Increase
cut CongWin in half CongWin by 1 MSS every
after loss event RTT in the absence of loss

events: probing

congestion
window

24 Kbytes —

16 Kbytes —

8 Kbytes —

» time

Long-lived TCP connection MaoWo7 33

CP Slow Start

- When connection begins, When connection begins,
CongWin =1 MSS Increase rate exponentially fast

- Example: MSS =500 bytes & until first loss event
RTT =200 msec

- initial rate = 20 kbps

= available bandwidth may be >>
MSS/RTT

- desirable to quickly ramp up to
respectable rate

Mao W07 34

TCP Slow Start (more)

- When connection begins, @Hosf A Host B@
iIncrease rate exponentially

until first loss event: t W
- double CongWin every

RTT
- done by incrementing %
CongWin for every ACK

received

= Summary: initial rate is
slow but ramps up
exponentially fast

«—RTT

OUr segments

time

Mao W07 35

Refinement

= After 3 dup ACKs:

- CongWin is cut in half
- window then grows linearly

= But after timeout event:

- CongWin instead set to 1 MSS;
- window then grows exponentially
- to a threshold, then grows linearly

=== Philosophy:

3 dup ACKs indicates
network capable of
delivering some segments
* timeout before 3 dup
ACKs is "more alarming”

Mao W07 36

Refinement (more)

Q: When should
the exponential
Increase switch
to linear?

A: When CongWi
gets to 1/2 of it:
value before
timeout.

Transmission round

Implementation:
= Variable Threshold

= At loss event, Threshold is
set to 1/2 of CongWin just
before loss event

T4+

TCP Series 2 Reno

Threshold

TCP Series 1 Tahoe

Threshold

Transmission round

1T T T
o1 2 3 4 5 6 7 8 910111213 1415

Mao W07

37

Summary: TCP Congestion
Control

« When CongWin is below Threshold, sender in slow-
start phase, window grows exponentially.

« When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

« When a triple duplicate ACK occurs, Threshold set
to CongWin/2 and CongWin set to Threshold.

« When timeout occurs, Threshold set to CongWin/2
and CongWin is set to 1 MSS.

Mao W07

38

TCP sender congestion control

Event State TCP Sender Action Commentary

ACK receipt | Slow Start | CongWin = CongWin + MSS, Resulting in a doubling of
for (SS) If (CongWin > Threshold) CongWin every RTT
previously set state to “Congestion
unacked Avoidance”
data
ACK receipt | Congestion | CongWin = CongWin+MSS * Additive increase, resulting
for Avoidance | (MSS/CongWin) in increase of CongWin by
previously (CA) 1 MSS every RTT
unacked
data
Loss event SS or CA | Threshold = CongWin/2, Fast recovery,
detected by CongWin = Threshold, implementing multiplicative
triple Set state to “Congestion decrease. CongWin will
duplicate Avoidance” not drop below 1 MSS.
ACK
Timeout SS or CA | Threshold = CongWin/2, Enter slow start

CongWin =1 MSS,

Set state to “Slow Start”
Duplicate SS or CA Increment duplicate ACK count | CongWin and Threshold
ACK for segment being acked

not changed | 39

CP throughput

« What's the average throughout ot TCP as a
function of window size and RTT?

- Ignore slow start

= Let W be the window size when loss occurs.

« When window is W, throughput is W/RTT

= Just after loss, window drops to W/2, throughput
to W/2RTT.

= Average throughout: .75 W/RTT

Mao W07 40

CP Futures

= Example: 1500 byte segments, 100ms RTT, want
10 Gbps throughput

» Requires window size W = 83,333 in-flight
segments

= Throughput in terms of loss rate:
1.22-MSS
RTT~/L

= = L=210" Wow

« New versions of TCP for high-speed needed!

Mao W07 41

TCP Fairness

Fairness goal: if K TCP sessions share same bottleneck link of
bandwidth R, each should have average rate of R/K

TCP connection 1

@E!_._x.

TP @ ﬂ)‘r’rleneck

conhnection 2 r-ou’fer'
capacity R

Mao W07 42

Why is TCP fair?

Two competing sessions:
= Additive increase gives slope of 1, as throughout increases
= multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput o

Connection 1 throughput R

Mao W07 43

Fairness (more)

Fairness and UDP Fairness and parallel TCP
i
« Multimedia apps often do not Conn.ec onS
use TCP = nothing prevents app from
opening parallel cnctions between

- do not want rate throttled by

congestion control 2 hosts.
. Instead use UDP: = Web browsers do this
- pump audio/video at « Example: link of rate R supporting
constant rate, tolerate 9 cnctions;
packet loss - new app asks for 1 TCP, gets rate
- Research area: TCP friendly R0
- new app asks for 11 TCPs, gets
R/2 !

Mao W07 44

Delay modeling

Notation, assumptions:

Q: How long does it take to receive = Assume one link between client
an object from a Web server after and server of rate R
sending a request? « S: MSS (bits)
Ignoring congestion, delay is - O: object size (bits)
influenced by: = no retransmissions (no loss, no
corruption)

= TCP connection establishment

. Window size:
= data transmission delay

= First assume: fixed congestion
= slow start window, W segments

= Then dynamic window,
modeling slow start

Mao W07 45

TCP Delay Modeling:
Slow Start (1)

Now suppose window grows according to slow start

Will show that the delay for one object is:

Latency = 2RTT +%+ P{RTT +%}— (2° —1)%

where Pis the number of times TCP idles at server:
P=min{Q,K-1}

- where Q is the number of times the server idles
if the object were of infinite size.

-and K is the number of windows that cover the object.

Mao W07 46

CP Delay Modeling:

Slow Start (2)

Belay COFHPOH@H'E- initiate TCP
connection

* 2 RTT for connection
estab and request

- O/R to transmit
object

* time server idles due
to slow start

Server idles:

P = min{K-1,Q} times
Example:
+ O/S =15 segments
* K= 4 windows
. Q = 2
*P=min{K-1,Q} =2

Server idles P=2 times

\

fi

request
object

object
delivered

time at

client Mao W07

\4

\ complete

¢

I

A

v
A

first window
=S/R

second wind
=2S/R

third window
=4S/R

fourth windo
= 8S/R

transmissior

time at

server

TCP Delay Modeling (3)

%+ RTT = time from when server starts to send segment

until server receives acknowledgement et rc”

connection

S .. : : —
2k_1E = time to transmit the kth window oaes
object — | . .
s flrstzvg;}gow
S k=1 S ’ . . . R%T nd wind
'l RTT -2 =l = idle time after the kth window [i
third window
=4S/R

fourth window

P
delay =%+ 2RTT + > idleTime,

=8S/R
p=1
O S k-1
=—+2RTT + » [=+RTT -2""— Y
R kzz; [R R] \ complete

object
S delivered

transmission

—_— time at
R time at server
client

=%+ ORTT + P[RTT +%]—(2P _1)

Mao W07 48

TCP Delay Modeling (4)

Recall K = number of windows that cover object

How do we calculate K ?
K=min{k:2°S+2'S+---+2“"'S >0}

=min{dk:2° +2"' +---+2“*>0/S}

=min{k : 2" -1> %}
: O
=min{k : k > Iogz(§+1)}

=[|092(%+1)—|

Calculation of Q, number of idles for infinite-size object,
is similar (see HW).

Mao W07 49

HTTP Modeling

= Assume Web page consists of:
- 1 base HTML page (of size O bits)
- M images (each of size O bits)
= Non-persistent HTTP:
- M+1 TCP connections in series
- Response time = (M+1)O/R + (M+1)2RTT + sum of idle times
= Persistent HTTP:
- 2 RTT to request and receive base HTML file
- 1 RTT to request and receive M images
- Response time = (M+1)O/R + 3RTT + sum of idle times
= Non-persistent HTTP with X parallel connections
- Suppose M/X integer.
- 1 TCP connection for base file
- M/X sets of parallel connections for images.
- Response time = (M+1)O/R + (M/X + 1)2RTT + sum of idle times

Mao W07 50

HTTP Response time (in seconds)

RT’_\' = 100 msec, O = 5 Kbytes, M=10 and X=5

20
18
161
14-
121
101

8_

B non-persistent

M persistent

@ parallel non-
persistent

oNn B O

28 100 1 Mbps 10
Kbps Kbps Mbps
For low bandwidth, connection & response time dominated by

transmission time.

Persistent connections only give minor improvement over parallel
connections. Mao W07 51

HTTP Response time (in seconds)

RTT =1sec, O = 5 Kbytes, M=10 and X=5
E

70
607
507 :
B non-persistent

407
301 B persistent
207] O parallel non-
107 persistent

O_‘

28 100 1 Mbps 10
Kbps Kbps Mbps

For larger RTT, response time dominated by TCP establishment
& slow start delays. Persistent connections now give important
improvement: particularly in high delayebandwidth networks. ;. \wo7 52

