
University of Michigan
EECS 489

Web Crawler

Joel Acevedo - joelace

Giselle Agosto - gagosto
Maria Ortiz de Zuniga – mozlch

Professor Morley Mao

December 16, 2005

I. Project Overview .. 3
II. Related Work.. 3
III. System Description ... 4

1. Thread Manager .. 4
2. Crawler Thread ... 5

a) URL Retrieval from Link Queue .. 5
b) Robots Exclusion Check... 6
c) HTTP Download... 6
d) Content Type Filter... 6
e) Content Seen Test ... 6
f) Save File.. 7
g) Link Extractor... 7
h) URL Filter... 7
i) URL Seen Test .. 8
j) Store Internal and External URLs Found .. 8

3. Scheduler Thread .. 8
a) Get Most Referenced Links ... 8
b) Queue Mapping ... 9
c) Update and Reorder of Link Queues .. 9

IV .Scheduling Policies... 9
V. Results.. 11
VI. References... 13

 2

I. Project Overview

Our project consists of designing and implementing an efficient general purpose

web crawler. A web crawler is an automated program that accesses a web site

and traverses through the site by following the links present on the pages

systematically. The main purpose of web crawlers is to feed a data base with

information from the web for later processing by a search engine; purpose that

will be the focus of our project.

II. Related Work

Most related work in this area is associated with popular search engines and

their crawling algorithms and detailed architecture is kept as a business secret.

However, web crawlers such as RBSE, the WebCrawler, the World Wide Web

Worm, the crawler of the Internet Archive, an early version of the Google crawler,

Mercator, Salticus, the WebFountain and the WIRE have published descriptions

of their architecture. Besides structural issues, research about Web crawling has

focused on parallelism, discovery and control of crawlers for Web site

administrators, accessing content behind forms (the “hidden” web), detecting

mirrors, keeping the freshness of the search engine copy high, long-term

scheduling , and focused crawling. In addition, there have been studies on

characteristics of the Web, that affect directly the performance of a Web crawler

such as detecting communities, characterizing server repose time, studying the

distribution of web page changes and proposing protocols for web servers to

cooperate with crawlers. [Castillo2004].

 3

III. System Description

Figure 1 shows de architecture of JoMaGic web crawler. This section describes

the purpose and implementation of each of the components shown.

Internet

Content
Seen?

Crawler Thread

HTTP
Request

 Extract
Links

Link Table

URL Seen?

Thread
Manager

Content
Type Filter

Checksum Table

Insert Links
 Save
 File

Robot
Exclusion

Check

File system

Scheduler Thread

Create
Threads

GetMostReferenced
Links

Map to
Queues

Link
Queue

Enqueue

Update and
Reorder
Queues

Sleep for
certain time

URL
Filter

Link
Queue

Q1

Qn

Qx

Link
Queue

Enqueue

Dequeue

Figure 1 Web Crawler Architecture

1. Thread Manager
The Thread Manager is invoked by the top-level application with a user specified number that

describes the number of concurrent connections. The Thread Manager creates and initializes a

thread for each of the desired connections, starts them and kills them when the crawling is done

or cancelled.

 4

2. Crawler Thread
The Crawler Thread is the component that carries out most of the work in the web

crawler. The crawling starts with one or more seed URLs that are specified by the user

and inserted into the Link Queue during the crawler’s initialization stage. For

illustration purposes, the whole process carried out by each Crawler Thread will be

divided into modules (that match those depicted in figure 1) and each module will be

described separately.

a) URL Retrieval from Link Queue

The Crawler Thread starts by retrieving the URL at the head of its Link Queue if there

is one. As will be described shortly, JoMaGic uses an array of Link Queues to store

the URLs found before they are processed and this array is stored inside the

Scheduler. Each Crawler Thread has access to one and only one of the queues that

constitute the Link Queue array to ensure that only one thread is accessing a host at a

given time. This guarantees that a given web server will not be overloaded with

requests because only one thread in the web crawler will be connecting to it.

Link Queue

As the name implies, this data structure holds the links that have been discovered and

keeps them in the order they will be examined. In JoMaGic, each crawler thread has

access to one link queue. This data structure is not a regular queue but a queue of

link objects like the ones depicted below in figure 2.

Figure 2: Structure of each Crawler Thread's Queue Link

 5

As can be seen, each element in the Link Queue consists of a host name, rank

number and an internal links queue or sub-queue. The scheduler keeps each

element (host, rank, sub-queue) in the Link Queue in order based on the rank of

each host (see next section). When the Crawler Thread requests a URL it

retrieves the first URL in the sub-queue of the element that is stored in the front

of the Link Queue. After retrieval the URL is taken out of the sub-queue. When

an element’s sub queue is emptied, the whole element is dequeued from the Link

Queue.

b) Robots Exclusion Check
Each thread has a hash table which maps excluded web pages to a particular

host. Every time a URL is retrieved from the Link Queue, its host will be looked

up in this table to see if it can be crawled or not. If the host for this page is not in

the hash table, its robots.txt file will be requested and parsed in order to extract

the excluded pages for that host.

c) HTTP Download
If the addressed web page should not be excluded, the Crawler Thread proceeds

to download the page’s content using the http protocol.

d) Content Type Filter
Before processing the downloaded page, the thread checks its MIME type by

examining the HTTP response’s Content-Type header. If the MIME type is not

text/html the Crawler Thread discards the URL and restarts the process by

retrieving a new URL from its Link Queue.

e) Content Seen Test
If the downloaded object passes the Content Type Filter, a test is run on it to

make sure that its content has not been processed before by the web crawler.

 6

This is done by calculating a checksum based on the byte content of the page

and comparing it with those previously stored in a database. The checksum is

calculated using a class which is part of the Java API and it serves as a

fingerprint that identifies the content of a web page.

f) Save File
If the page content passes the Content Seen Test described above, the Crawler

Thread proceeds to store it in the file system as an html file. The file is stored in a

path, relative to a root directory, that corresponds directly to the file’s URL. For

instance, if the URL of the downloaded page is

http://amadeus.uprm.edu/~s00016/web the file will be saved as:

<root dir> \amadeus_uprm_edu\~s00016\web\index.html

g) Link Extractor
After saving the web page, the Crawler Thread parses the page extracting

references to other objects as they are found. Many web crawlers are limited to

hyperlinks but JoMaGic extracts all references by means of the href HTML

attribute, and HTML frames. As each link is found it is also classified as external

or internal. An external link is a link which URL points to an object in a different

host from that of the web page where it was found. An internal link has the same

host as the web page where it was found.

h) URL Filter
The URL filter rejects URLs that JoMaGic is not interested in based on the

extension of the file it points to. The filter look for addressed files containing

popular file extensions such as pdf, doc, ppt, avi, mpeg, jpg, bmp and mov, and

discard them from the set of URLs that will be processed in the future.

 7

http://amadeus.uprm.edu/~s00016/web

i) URL Seen Test
Both the internal and external URLs that survive the URL Filter have to be

checked against a record of visited pages stored in the database. All the URLs

that are already stored in the database are discarded and those that do not exist

in it are inserted. Before rejecting the previously visited URLs, all URLs that get

to the URL Seen Test are used to calculate the ranking of the hosts that have

been seen by all threads up to this point.

j) Store Internal and External URLs Found
During this stage, the thread stores the internal and external links found for later

processing. Internal links are inserted by the thread both in the database and in

the sub-queue from where the URL where they were found was extracted.

External links are inserted in the database so that the Scheduler can decide

when to extract them, in which of the Link Queues to insert them and their

position inside the selected Link Queue.

3. Scheduler Thread

The scheduler thread is triggered at fixed intervals of time during the crawling

process. Each time it carries out the following procedure:

a) Get Most Referenced Links
In this stage, the scheduler calculates the rank of all the visited hosts so far and

determines which are the ones with the highest rank. The next section

Scheduling Policies explains in detail how this “rank” is determined for all the

hosts that are crawled.

 8

b) Queue Mapping
For each host that results from the calculations described above, the Scheduler

gets all links that have not been processed and performs one of the following: the

Scheduler either creates a new element (host, rank, sub-queue) and inserts it in

an available Link Queue or it inserts it into its appropriate sub-queue, depending

on whether the URL’s host exists already somewhere in the Link Queue array or

not.

c) Update and Reorder of Link Queues
At this stage, the Scheduler Thread goes through each Link Queue, updates the

ranks of each of its elements and reorders it. The reorderind is based on each

element’s rank.

IV .Scheduling Policies

The long-term scheduling policy implemented by the JoMaGic web crawler is

based on the importance metric known as back link count. An importance metric

is basically a way to measure the most referenced web pages in the Internet and

therefore download them before other pages with less importance. Back link

count is based on determining the importance of a given web page by counting

the number of pages that link to it or reference it. Intuitively, a page p that is

linked to many pages is more important than a page that is seldom referenced

[Cho98]. In order to calculate the importance of a web page I(p) based on back

link count, all the back links for a certain web page throughout the Web must be

counted. Our crawler estimates this measurement using I’(p), which is an

estimate of the back link count for a page p based on the pages that have been

crawled so far.

 9

The following algorithm taken from [Cho98] entails how back link count is

calculated. We can see that for every url u, its back link count is equal to the

number of times u appears in a queue called links, which holds all the URLs that

have been extracted from all the pages that have been visited so far. Once this

number is obtained the queue that holds the URLs to be downloaded (url queue)

is reordered based on it.

 backlink count, I(p)
 foreach u in url queue
 backlink count[u] = number of terms u in links
 sort url queue by backlink count[u]

The back link count algorithm described above was implemented in the JoMaGic

web crawler as follows: Everytime a group of links are extracted from a certain

webpage by the thread in charge of doing so, these links go to a database which

holds all of the links that have been obtained throughout the crawl, their back link

count and their current status (not processed, in process, processed). If a link is

in the database, but has still not been assigned to any thread for crawling it is

considered not processed, if it is inside a thread’s queue waiting to be processed,

it is considered in process, and finally if it has already been visited and is no

longer in a thread’s queue it is considered processed. When this happens,

there’s a database function (url_seen) that will verify if this link is already in the

database. If it is, the backlink count for that link will be incremented, if it isn’t the

link will be added to the database. Every n number of seconds, the scheduler

thread will query the database for the x hosts with a largest back link count and

that have still not been processed. The scheduler will take the URLs returned by

the database and will allocate them to different threads for crawling. The way this

allocation to threads is done is as follows: First the scheduler will verify if there’s

any thread that is already downloading from the same host as any of the URLs

that it is about to allocate. It then allocates these URLs to their respective

threads. The URLs that did not map to any of the threads, will then be distributed

throughout the threads in a round robbing fashion. Once all the URLs have been

allocated to a thread, the queues that hold the links to be crawled for each thread

 10

will be updated and reordered. This will ensure that each thread is always

crawling first the host in its queue with the largest back link count. The update

and reorder of each queue is done as follows: Each thread will query the

database to obtain the new back link count for each of the hosts that it has in its

queue. This back link count is obtained by adding all of the back link counts of all

the URLs that belong to this host and are currently in the database. Once the

new back link count is obtained for each host in the queue, the queue is

reordered so that the first host in the queue is the one with the largest back link

count.

The short term scheduling policy used in the JoMaGic web crawler is breadth first

ordering. This is based on the notion that the most important pages in a host are

the first ones encountered, and as we begin entering deeper in to a hosts’ pages

they become less important. When a thread extracts links from a page it will sort

them as external and internal. If the links are internal, meaning that they belong

to the same host as the page where they were found, the thread that found them

will insert them in its queue and in the database and will mark them as in

process. Therefore, the scheduler will never have to deal with these links. Using

this approach pages are inserted in the queue, in the order that they are found,

ensuring that the ones that where found first are crawled first.

V. Results

In order to measure the performance of our web crawler a series of metrics will

be used:

1) Percentage of Important Pages – This metric, proposed by [Cho98] uses

the percentage of pages with high importance that were crawled in order

to measure the crawler’s performance. In order to do this a target back link

count G must be chosen. Then H is the number of pages that were

crawled and have a back link count > G, and T is the number of pages that

 11

were downloaded. Therefore H/T is the crawler’s performance. If the H is

equal to T the crawler’s performance is 1.

2) Diversity of Pages downloaded – This metric shows how many different

domains were visited by the crawler. This data can be obtained by

querying the database after the crawl has finished for all the different

hosts that have were processed.

3) Pages Downloaded per Time – This metric can be used to measure how

fast is our web crawler. When the crawl is finished, the database can be

queried for all the processed URLs and this number is divided by the total

time that the crawl lasted.

Since our web crawler has a series of parameters that can be customized like

the number of threads, the scheduling time and the maximum size of the

queue for a thread, these parameters can be changed in order to see how

they affect the performance metrics described above.

A web crawler is a very powerful tool that can be used to obtain useful data from

the Internet. The following valuable Internet information can be obtained with the

JoMaGic web crawler:

1) Duplicate pages in the Web – Since our crawler verifies the checksum

of a given web page against the checksums of the pages that have been

crawled already, it can easily count how many times two pages with the

same content were found.

2) Percentage of Broken Links – Since our crawler keeps track of all the

pages that are being visited , it could keep a count of how many of these

pages are answered with a 404 Not Found instead of a 200 OK.

3) Pages with a Higher Level have Higher Back Link Count – The

JoMaGic web crawler keeps track of the back link count of all the URLs

that are found. This number can be used to prove the scheme that we are

using for short term scheduling. We can compare the back link count of

pages that are found first when crawling pages in a host against the back

link count of pages that were found deeper in the same host.

 12

4) Most Important Web pages – When the crawling is done, we can

determine the most important pages in the Web, based on the highest

back link counts.

Due to the fact that a crawl that can be used to obtain the above data accurately

and to measure performance has to be very extensive and must be run for a day

or more, these measurements are not available for this report. The crawls to

obtain these data are being run as this report is being written. Therefore this data

will be available for the face to face grading.

 VI. References

1. Castillo, C., Marin, M., Baeza-Yates, R., Rodriguez, A. (2004). Scheduling

Algorithms for Web Crawling. In Latin American Web Conference
(WebMedia/LA-WEB), Riberao Preto, Brazil, 2004. IEEE Cs. Press

2. A. Heydon and M. Najork. Mercator: A scalable, extensible web crawler.
World Wide Web Conference, 2(4):219–229, April 1999.

3. J. Cho, H. Garc´ıa-Molina, and L. Page. Efficient crawling through URL

ordering. In Proceedings of the seventh conference on World Wide Web,
Brisbane, Australia, April 1998

 13

http://citeseer.ist.psu.edu/article/castillo04scheduling.html
http://citeseer.ist.psu.edu/article/castillo04scheduling.html

	II. Related Work
	III. System Description
	1. Thread Manager
	2. Crawler Thread
	a) URL Retrieval from Link Queue
	b) Robots Exclusion Check
	c) HTTP Download
	d) Content Type Filter
	e) Content Seen Test
	f) Save File
	g) Link Extractor
	h) URL Filter
	i) URL Seen Test
	j) Store Internal and External URLs Found

	3. Scheduler Thread
	a) Get Most Referenced Links
	b) Queue Mapping
	c) Update and Reorder of Link Queues

	IV .Scheduling Policies
	V. Results
	VI. References

