Routing on the Internet

In the beginning there was the ARPANET:
- route using GGP (Gateway-to-Gateway Protocol), a distance vector routing protocol

Problems:
- needed “flag-hour” to update routing protocol
- incompatibility across vendors

Solution: hierarchical routing
- administrative autonomy:
 - each network admin can control routing within its own network
 - internet: network of networks
- allows the Internet to scale:
 - with 200 million hosts, each router can’t store all destinations in its routing table
 - route updates alone will swamp the links

Hierarchical Routing

Aggregate routers into regions of “autonomous systems” (AS)

Routers in same AS run same routing protocol
- “intra-AS” routing protocol
- each AS uses its own link metric
- routers in different ASs can run different intra-AS routing protocol

Gateway/border router
- direct link to router in other AS(s)
- keeps in its routing table:
 - next hop to other ASs
 - all hosts within its AS
 - hosts within an AS only keep a default route to the border router

The NSFNet 1989

Area hierarchy:
- backbone/core: NSFNet
- regional networks: MichNet, BARRNET, Los Nettos, Cerfnet, JVCNet, NEARNet, etc.
- campus networks

Sketch of the Internet around 1990: point of presence (pop) NSFNet backbone Regional networks Customer networks Users Walrand NSFNet backbone

AS1 AS2 AS3 AS4 border routers 1.1 2.1 3.1 4.1

<table>
<thead>
<tr>
<th>dest</th>
<th>next</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>3.4</td>
<td>3.4</td>
</tr>
</tbody>
</table>
Commercialization (1994)
Roughly hierarchical
At center: “Tier-1” ISPs
- Tier-1 ASs are those who have peering relationship with each of the other Tier-1 ASs, e.g., UUNet, BBN/Genuity, Sprint, AT&T
- national/international coverage
- peers exchange traffic for free
- customers must pay to have their traffic carried

Tier-1 providers interconnect (peer) privately
Tier-1 providers also interconnect at public network access points (NAPs)

Tier-1 ISP: e.g., Sprint
Sprint US backbone network

Qwest IP Backbone (Late 1999)
“Tier-2” ISPs: Smaller (Often Regional) ISPs

Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs

Tier-2 ISP pays tier-1 ISP for connectivity to rest of Internet
- tier-2 ISP is customer of Tier-1 provider

Tier-2 ISPs also peer privately with each other, and interconnect at NAPs

“Tier-3” ISPs and local ISPs

Last hop (“access”) network (closest to end systems)

Local and tier-3 ISPs are customers of higher tier ISPs connecting them to rest of Internet
A Packet Passes Through Many Networks

Interconnected ASes

Routing is not Symmetric

Network Access Points

To learn more about Internet AS state see:

- Geoff Huston's CIDR Report: http://www.cidr-report.org/as2.0/
- Russ Haynal's ISP page: http://navigators.com/isp.html
- CAIDA skitter maps: http://www.caida.org/research/topology/as_core_network/AS_Network.xml
ISP Backbone Links

Categories of links, by inside/outside AS:
• backbone links: connect routers inside the backbone
• edge links: connect an AS with other ASs

Categorization by commercial relationship:
• access links: customers to ISP (can be multi-homed)
• peering links: inter-AS connections
 • either direct peering or through NAPS
 • may have multiple peering relationships at different geographic locations

Categorization by traffic flow:
• ingress link
• egress link

ISP Backbone Traffic

Types of traffic:
• internal traffic: between 2 access links
• transit traffic: between 2 peering links
• inbound traffic: ingress at peering link, egress at access link
• outbound traffic: vice versa

An ISP may choose to carry transit traffic
Most traffic on large ISPs (Tier-1 ASs) is transit traffic

Internet inter-AS Routing: BGP

BGP (Border Gateway Protocol) is the de facto standard for inter-AS routing

BGP provides each AS a means to:
• obtain subnet (prefix) reachability information from neighboring ASs
• propagate the reachability information to all routers internal to the AS
• determine “good” routes to subnets based on reachability information and policy
• Inter-AS routing is policy driven, not load-sensitive, generally not QoS-based

When AS2 advertises a prefix to AS1, AS2 is promising AS1 to forward any datagrams destined to that prefix coming from AS1
• AS2 can aggregate prefixes in its advertisement

Path Attributes & BGP Routes

When advertising a prefix, advertisement includes BGP attributes

Two important attributes:
• AS-PATH: the path vector of ASs through which the advertisement for a prefix passed through
• NEXT-HOP: the specific internal-AS router to next-hop AS
 (there may be multiple exits from current AS to next-hop-AS)

Sample BGP entry:

<table>
<thead>
<tr>
<th>destination</th>
<th>NEXT-HOP</th>
<th>AS-PATH</th>
</tr>
</thead>
<tbody>
<tr>
<td>198.32.163.0/24</td>
<td>202.232.1.8</td>
<td>2497 2914 3582 4600</td>
</tr>
</tbody>
</table>

• address range 198.32.163.0/24 is in AS 4600
• to get there, send to next hop router, which has address 202.232.1.8
• the path there goes through ASs 2497, 2914, 3582, in order
BGP Messages

Pairs of routers (BGP peers) exchange reachability information over semi-permanent TCP connections: BGP sessions

- advantage of using TCP: reliable transmission allows for incremental updates
- disadvantage: TCP congestion control mechanism slows down route updates that could decongest link!
- BGP sessions do not correspond to physical links

BGP messages:

- **OPEN**: opens TCP connection to peer and authenticates sender
- **UPDATE**: advertises a new path (or withdraws an old one)
- **KEEPALIVE**: keeps connection alive in the absence of UPDATEs; also acknowledges OPEN request
- **NOTIFICATION**: reports errors in previous message; also used to close connection

BGP Policy Routing

Some ASs are more equal than others
Commercial relationship between ASs:

- peering: peers agree to exchange traffic for free
- customer-provider: customer pays provider for access
- backup

An AS’s export policy (which routes it will advertise):

- to a customer: all routes
- to a peer or service provider: routes to all its own prefix address ranges and to its customers’ prefixes, **not** to prefixes learned from other providers or peers
- internal routing of an AS is effected by its neighbors’ route export policy

BGP Policy Tools

An AS may learn about more than one route to some prefix
Each AS applies its own local policies to select route

Import policies: which of the advertised routes I want to use

- always check AS-PATH against routing loop
- an AS can specify its preferred **egress** point to reach a specific other AS

Export policies: how to set attributes of routes I advertise

- always prepend itself to the AS-PATH
- multiple-exit discriminator (MED):
 - an AS can tell a neighbor its preferred **ingress** point
 - cold-potato routing: ingress closest to destination prefix
 - hot-potato routing: egress (NEXT-HOP) closest to traffic source (ignore the other guy’s MED)

BGP Routing Policy Example

A, B, C are provider networks
X, W, Y are customer (of provider networks)
X is dual-homed: attached to two networks
X does not want to route from B via X to C
.. so X will not advertise to B a route to C
BGP Routing Policy Example

A advertises to B the path AW
B advertises to X the path BAW
Should B advertise to C the path BAW?
No way! B gets no “revenue” for routing CBAW since neither W nor C are B’s customers
B wants to force C to route to w via A
B wants to route only to/from its customers!

Why Separate Intra- and Inter-AS Routing?

Policy:
Inter-AS: admin wants control over how its traffic is routed, who routes through its network. Inter-AS routing is policy driven, not load-sensitive, generally not QoS-based
Intra-AS: single admin, so no policy decisions needed

Scale:
hierarchical routing saves table size, reduced update traffic

Performance:
Intra-AS: can focus on performance
Inter-AS: policy may dominate over performance

The Phone Network (for Contrast)

Phone routing:
• within central office, connect directly (local call)
• between central offices (zones), use 1 hop path
• else, send to core (long distance)
• core: use 1-hop path first, else try alternate 2-hop paths

The Internet: frequent outages, each lasting from a few minutes to a few days

Communication Networks Taxonomy

POTS Network:
• parses number dialed
• sets up a circuit between caller and callee
• sends signal to ring callee’s phone
• a circuit is set up between the two ends

Strengths:
• no end-point intelligence
• excellent voice performance

Weaknesses:
• difficult to add new services
• achieves performance and reliability by over-allocating resources (expensive)

The Internet:
• data parceled into packets
• each packet carries a destination address
• each packet is routed independently
• packets can arrive out of order
• packets may not arrive at all

Strengths:
• intelligence at end points
• decentralized control
• operates over heterogeneous access techs

Weaknesses:
• variable performance, no quality of service
• no trusted infrastructure
Packet-switched Networks: Forwarding

Datagram network:
- *destination address* in packet determines next hop
- routes may change during session
- analogy: driving, asking directions

Virtual circuit network:
- each packet carries tag (virtual circuit ID), tag determines next hop
- fixed path determined at *call setup time*, remains fixed through call
- routers maintain per-call state

MultiProtocol Label Switching (MPLS)

Initial goal: speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding

- borrowing ideas from Virtual Circuit (VC) approach
- but IP datagram still keeps IP address!

Label Switching

- encapsulate a data packet
 - put an MPLS header in front of the packet
 - MPLS header includes a label
 - label switching between MPLS-capable routers

MPLS Capable Routers

A.k.a. label-switched router

Forwards packets to outgoing interface based only on label value (don’t inspect IP address)

- MPLS forwarding table distinct from IP forwarding tables

Signaling protocol needed to set up forwarding

- RSVP-TE
 - forwarding possible along paths that IP alone would not allow (e.g., source-specific routing)
 - use MPLS for traffic engineering
 - must co-exist with IP-only routers

MPLS Forwarding Tables
Status of MPLS

- Deployed in practice
 - BGP-free backbone/core
 - Virtual Private Networks
 - Traffic engineering

Challenges
- Protocol complexity
- Configuration complexity
- Difficulty of collecting measurement data

Continuing evolution
- Standards
- Operational practices and tools

VPNs With Private Addresses

MPLS tags can differentiate pink VPN from orange VPN

BGP-Free Backbone Core

Routers R2 and R3 don’t need to speak BGP