Midterm stats

Mean: 63.66 (out of 80)
Standard deviation: 11.34

Internet Protocol Stack

application: supporting network applications
- HTTP, SMTP, FTP, etc.

endhost-endhost data transfer
-« TCP, UDP

routing of datagrams from source
to destination

« IP, routing protocols

data transfer between neighboring
network elements
» Ethernet, WiFi

bits “on the wire”

application

transport

network

link

physical

Principles of Network Applications

Our goals:
« conceptual, implementation aspects of network application
protocols
- transport-layer service models
« client-server paradigm
* peer-to-peer paradigm
- examine some popular application-level protocols

« HTTP
+ SMTP/POP3/IMAP

Application-Layer Protocols

+ Messages exchanged between applications

+ syntax and semantics of the messages between end-hosts

» tailored to the specific application (e.g., Web, e-mail)

+ Messages transferred over transport connection (e.g., TCP)
« Popular application-layer protocols

« HTTP, SMTP, FTP, SSH, ...

GET /index.html HTTP/1.1

HTTP/1.1 200 OK

Some Network Apps
(and Their Protocols)

+ E-mail (SMTP)

* Web (HTTP)

* Instant messaging (IRC)
« Remote login (Telnet)

« P2P file sharing (Napster,
Gnutella, KaZaa)

« Multi-user network games

« Streaming stored video
clips (Adobe’s RTMP)

- Internet telephone
(Skype)

+ Real-time video

conference (RTP)

- Massively parallel
computing

Creating a Network Application

* Write programs that

« run on different end systems and

« communicate over a network.

* e.g., Web browser software
communicates with browser
server

* No app software written for
devices in network core

» Network core devices do not
function at app layer

« This design allows for rapid app
development

transport

network

data link

physical

transport

(@

network

data link

©
@€ \é @

physical

&

transport

network

data link

physical

Application Architectures

Peer-to-peer (p2p):

+ hybrid of p2p and centralized server
+ pure p2p

« hierarchical p2p

+ end-host (p2p) multicast

Hybrid of P2P and Centralized Server

Napster:
« file transfer P2P
« file search centralized:

* peers register IP address and content at central index server
* peers query central index server to locate content

Napster Central

Client
Index Serverg

g =

=4 Napster L
Napster 2 Client =

=

3

%
E)

Pure P2P Architecture

no always-on server
arbitrary end systems directly communicate

peers are intermittently connected and change IP addresses
example: Gnutella
highly scalable (why?)
but difficult to manage

» how to find peer?
« how to find content?

Gnutella

no centralized index server

network discovery using ping and
pong messages

file discovery using query and
queryHit messages

both ping and query messages are
forwarded using the flooding
algorithm: forward on all links except
incoming one

previously seen messages are not
further forwarded

new version of gnutella uses KaZaA-
like supernodes

queryHit T

Hierarchical P2P

« FastTrack used by KaZaA, Groskster, iMesh, Morpheus

« hierarchical architecture O p
- peers divided into supernodes O a O

and ordinary nodes O\\ _— \ re
0

« each supernode keeps an index /
of all its children’s files O \ ~O O
-

* requests are sent to supernodes

'\O
- supernodes query each other for K I \O
O

files not in their local indices

« ordinary nodes are “promoted” to supernodes if they have
enough resources and have stayed on network long enough

« parallel download of files

+ eDonkey/eMule also builds a hierarchical network, but the
“supernodes” are dedicated servers, not just more equal peers

Freenet: Anonymous P2P

* no index server © 7= Damarequest

* requester doesn’t connect eqsesr /u//' = Data reply
directly to content provider : P 7= Request faled
. . |
« instead, content passed in a //) Data holder
. . ¢ | /
bucket-brigade fashion from / o
rovider to requester S = 10)
®
. the next time content is Figure |.Typical request sequence.The request moves through the

network from node to node, backing out of a dead-end (step 3) and

requested, it is provided from @/op (step 7) before locating the desired fike.
the nearest cache
* requester cannot differentiate
provider from a cache holder
or a forwarding peer (allow for
anonymity)

Tracker Peer

BitTorrent i@J |7

Obtain

list of

peers
Content distribution:

« content is divided into N @ @

=

pieces of 16KB each and
sent to N peers

Content download: ==
+ to download a file, a peer must first register with a Tracker
« Tracker returns a random list of peers who have the file

« peer opens about 5 TCP connections to the provided peers

« a peer will only upload to peers from whom it can also
download (“tit-for-tat”)

Challenges for P2P Networks

I. NAT and firewall:

« cannot peer with a host you can’t address

Solutions:

* Gnutella:
+ querier sends PUSH message to responder over the p2p network
+ responder opens a TCP connection to querier and send over the file
+ no luck if both are behind firewalls

+ KaZaA, eDonkey, Skype:
« supernodes act as proxy if both peers are behind firewalls

« Standards to circumvent NAT (and firewall!): UPnP, STUN

2. Download/upload bandwidth asymmetry

= needs bandwidth subsidy by content provider or CDN,
or suffer long download time

Application Architectures

+ end-host (p2p) multicast

Modes of Delivery

Unicast, broadcast, multicast

Assuming a video conference
involving S, D2, and D3

* unicasting: two copies of packets from S are sent ove
the SR link

* broadcasting: one copy of packet sent from S to all
destinations, but packet sent to D/ and D4
unnecessarily

* multicasting: one copy of packets from S is sent over
the SR link, R then sends one copy each to D2 and D3

Multicast Delivery

Uses of multicasting:
* video conferencing, distance learning, distributed
computation, p2p delivery, multi-player gaming, etc.

Multicast design goals:

« can support millions of receivers per multicast group
* receivers can join and leave any group at any time

« senders don’t have to know all receivers

« senders don’t have to be members of a group to send
« there could be more than one sender per group

Multicast Group Management

Issues in multicast group management:

|. how to advertise/discover a multicast group?
2. how to join a multicast group?

3. delivering multicast packets to the group

IPv4 multicast:

« use multicast (Class-D) addresses as anonymous
rendezvous point

« create a well-known multicast group (address) to
advertise/discover multicast groups

 multicast data is sent using UDP
« sender sendto () the multicast address
+ receiver recvfrom () the multicast address

+ not uniformly deployed throughout the Internet

End-host Multicast

Issues in multicast group management:

I. how to advertise/discover a multicast group?
2. how to join a multicast group?

3. delivering multicast packets to the group

End-host (p2p) multicast:

« use a well-known, centralized rendezvous server

« each peer must register with rendezvous server

« rendezvous server returns a (random) list of peers

« each peer can support only a limited number of peers
« avoid sending duplicate messages and looping:

« if single source, construct a shortest-path tree rooted at source
+ or use flood-and-prune algorithm

« prefer peers in same subnet

Flood and Prune

How to ensure that only one copy of packet

from S'is forwarded by P3 to P4? e

+ keep track of sequence number
+ only forward packet that comes from

shortest path from (to) source @

How to ensure that only one copy of packet
from § reaches P3?
« only forward if self is on neighbor’s shortest path
from (to) source @
+ prune (P3 telling P2 not to forward pkts from S')

+ must be done per source if there are multiple sources,
each source forming its own multicast group and
(logically) its own multicast tree

» must periodically flood in case of membership change

10

Application Architectures

Client-server:
. FTP

« SMTP

« HTTP

+ cookies
+ web caching
- CDN

« Multi-player games

Client-Server Computing

server:

+ waits for connection

client:

a process that manages access to a resource
usually has a permanent IP address

server farms for scaling

* how do server farms maintain
a single IP address externally?

a process that needs access to a resource
initiates connection with server
may be intermittently connected

may have dynamic IP addresses
do not communicate directly with each other

Process vs. machine

11

File Transfer Protocol (FTP, RFC959)

Transfer file to and/or from remote host

+ client: the side that initiates transfer (either to/from remote)

ftp-control ﬂ

connection [1

file transfer Fulp
ftp=data erver

port 20
local file remote file
system system

- server listens on port 21 for control connection from client

- server: remote host

- server maintains “state’:
current directory, earlier
authentication

+ separate control, data connections

- client obtains authorization and send commands over control connection

+ when server receives a command for a directory listing or file transfer, the server
opens a separate TCP data connection to client
« client listens for connection on an ephemeral port
« client sends ephemeral port number to server

« server uses port 20 for the ftp-data connection to client’s ephemeral port

« after each directory/file transfer, server closes ftp-data connection

What'’s the advantage of an out-of-band control channel?

FTP Commands

Sent as ASCII text over control channel
Sample commands:

Command Description
ABOR abort previous FTP command and any data transfer
LIST filelist list files or directories
PASS password password on server
PORT n1,n2,n3,n4,n5,n6 | client IP address (n1.n2.n3.n4) and port (n5 x 256 + n6)
QUIT logoff from server
RETR filename retrieve (get) a file
STOR filename store (put) a file
SYST server returns system type
TYPE type specify file type: A for ASCII, I for image
USER username username On server

Stevens

12

FTP Reply Codes

Meanings of the first and second digits of the reply code:

Reply Description
lyz | Positive preliminary reply. The action is being started but expect another reply before
sending another command.
2yz | Positive completion reply. A new command can be sent.
3yz | Positive intermediate reply. The command has been accepted but another command must
be sent.
4yz | Transient negative completion reply. The requested action did not take place, but the error
condition is temporary so the command can be reissued later.
5yz | Permanent negative completion reply. The command was not accepted and should not be
retried.
x0z Syntax errors.
x1z | Information.
Samp X2z Connections. Replies referring to the control or data connections.
x3z | Authentication and accounting. Replies for the login or accounting commands.
33 | x4z | Unspecified.
x5z Filesystem status.
12 2 . . Stevens
425 Can’t open data connection
452 Error writing file

ing

Fixed Header vs. ASCIl Commands

What are the advantages and disadvantages of using ASCIl commands over
fixed header as with IP or TCP?

Why limit ASCIl commands to four letter words?

Why use numeric code in reply?

Why bother with ASCIl message in reply?

13

Application Architectures

Client-server:

+ SMTP
+ HTTP

+ cookies

+ web caching

- CDN

« Multi-player games

517 N

ailr [N
. . user
Electronic Mail 4 =
mail
Three major components: e
* user agents —
] N
« mail servers S0 il SMTP
+ simple mail s 7TP ~
transfer protocol (SMTP) N ﬁ S
SMTP mail SMTP
User agent \ =
+ a.k.a. “mail reader” 00000

- composing, editing, reading mail messages
- e.g., Thunderbird, Apple Mail, Eudora, Outiook
+ outgoing, incoming messages stored on server

Mail servers :

+ mailbox contains incoming messages for user

+ message queue contains outgoing (to be sent) mail
messages

outgoing
message queue

0 user mailbox

il [N
user

mail Eilr [N

server | [user
[iiiiin]| [agent

00aoo

14

Electronic Mail: SMTP (RFC 2821)

SMTP protocol runs between mail servers to send email
messages

- client: sending mail server

- server: receiving mail server

Uses TCP to reliably transfer email message from client to server,
port 25
direct transfer: sending server to receiving server
- three phases of transfer
- handshaking (greeting)
- transfer of messages
- closure

+ command/response interaction
+ commands: ASCII text
- response: status code and phrase

-_messadges must be in 7-bit ASCII

Sample SMTP Interaction

220 hamburger.edu

HELO crepes.fr

250 Hello crepes.fr, pleased to meet you

MAIL FROM: <alice@crepes.fr>

250 alice@crepes.fr... Sender ok

RCPT TO: <bob@hamburger.edu>

250 bobfhamburger.edu ... Recipient ok

DATA

354 Enter mail, end with "." on a line by itself

Do you like ketchup?
How about pickles?

250 Message accepted for delivery
QUIT
221 hamburger.edu closing connection

nonaooononOonnQn

Try it out! ¥ telnet crepes.fr 25
(Real programmers send email by . . . not)

15

Mail Message Format (RFC 822)

mail message maiiltor:;iiuge ;‘.q. 1%‘
g@}- e
o 2,13'5._ .m, —_— (‘_.--:Q:' ;i'

¥ - 4
ﬁw‘{ v

« SMTP: protocol for exchanging email messages

« RFC 822: standard for text only message format:
+ header lines, e.g,,

« To: \
g header |

« From:

« Subject: <«—+blank

- different from SMTP commands! line
* body

ly
« the “message”, ASCII characterson%

Mail Message Format: MIME

= MIME: MultIMEdia mail extension (RFC 2045, 2056)
= additional lines in msg header declare MIME content type

example,
. From: alice@crepes.fr
MIME versio To: bob@hamburger.edu
method used | Subject: 1.>icture of yummy crepe.
—_ MIME-Version: 1.0
to encode data " Content-Transfer-Encoding: base64

multimedia data » Content-Type: image/jpeg

type, SUthPe’ " base64 encoded data
arameter declaration)|

encoded dat -

16

Mail Access Protocols

mail access

protocol
_—

« SMTP: delivery/storage to receiver’s server

+ Mail access protocol: retrieval from server

+ POP: Post Office Protocol (RFC 1939)
+ IMAP: Internet Mail Access Protocol (RFC 1730)
*« HTTP: Yahoo! Mail, Gmail, Hotmail, etc.

POP3 and IMAP

POP3

- simple authorization (agent
& server) and download

« POP3 is stateless across
sessions

+ two modes:

I. “download and delete”

mode
« user cannot re-read e-mail if
he changes client
2. “download-and-keep”
mode

- copies of messages on
different clients

IMAP

more features (more
complex)

IMAP keeps user state
across sessions

all messages are kept at
the server

manipulation of stored
messages on server
allows user to organize
messages in folders

* names of folders and
mappings between message
IDs and folder name

17

POP3 Dnload and Delete Example

Authorization phase
- client commands:

* user: declare username
* pass: password

* Server responses
* +OK
-ERR

Transaction phase, client:

- list: list message
numbers

- retr: retrieve mes
by number

- dele: delete
- quit

~

.

N

naoOnn

e

naoonnoonnonnn Q

+OK POP3 server ready
user bob

+0OK

pass hungry

+OK user successfully logged on

list
1 498
2 912

retr 1
<message 1 contents>

dele 1
retr 2
<message 1 contents>

dele 2
quit
+OK POP3 server signing off

Application Architectures

Client-server:

- HTTP

+ cookies
+ web caching
- CDN

+ Multi-player games

18

Web and HTTP

+ A web page consists of objects

- An object can be an HTML file, a JPEG image, a Java
applet, an audio file, a flash video ...

+ A web page comprises a base HTML-file which
includes several referenced objects

Example URL:

Each object is addressable by a URL

http://www.someschool.edu/someDept/pic.gif

protocol host name

path name

HTTP Overview

HTTP: HyperText Transfer Protocol
« Web’s application layer protocol
- client/server model

* client: browser that requests,
receives, and “displays” Web objects

* server: Web server sends objects
in response to requests

« HTTP 1.0: RFC 1945
« HTTP I.1: RFC 2068

@ rrs
PC running z ’eql,
Ons, E
e
ver

s o
runnin
g

Apach
e Web
server

Mac running
Safari

19

HTTP Overview

Uses TCP:

- client initiates TCP connection (creates socket) to server,

port 80

- server accepts TCP connection from client

« HTTP messages (application-layer protocol messages)
exchanged between browser (HTTP client) and Web server

(HTTP server)
- TCP connection closed

HTTP is “stateless”

- server maintains no information

about past client requests

asid
Protocols that maintain ->vace”

are complex!

- past history (state) must be
maintained

- if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

HTTP Request Message

Two types of HTTP messages: request, response

HTTP request message:
* in ASCIl (human-readable format)

* general format:

Entity Body

L example

(extra carriage return, line fee

Carriage return,
line feed
indicates end

of message |

20

Method Types (HTTP 1.1)

- GET, POST, HEAD
. PUT

- uploads file in entity body to path specified in URL field
- DELETE

- deletes file specified in the URL field

Uploading form input alternatives
1. POST method:

- web pages often include form input

- input is uploaded to server in entity body
2. as parameter to GET URL method:

- input is uploaded in URL field of request line:
WWw.somesite.com/animalsearch?monkeysé&banana

input parameters

HTTP Response Message

‘ . example
first line: status HTTP/1.1 200 OK

line / " Connection close

(protocol status Date: Thu, 06 Aug 1998 12:00:15 GMT
code, status header| server: Apache/1.3.0 (Unix)

phrase) lines Last-Modified: Mon, 22 Jun 1998 ...
Content-Length: 6821

_Content-Type: text/html

A few sample codes:

200 OK data data data data data ..

- request succeeded, requested object later in this message

301 Moved Permanently data, e.g
. . . L requestg
- requested object moved, new location specified later in this HTML fi

message (Location:)
400 Bad Request
- request message not understood by server
404 Not Found
- requested document not found on this server
505 HTTP Version Not Supported

21

