
1

Midterm stats 	
	

Mean: 63.66 (out of 80)	

Standard deviation: 11.34	

Internet Protocol Stack	

application: supporting network applications	

•  HTTP, SMTP, FTP, etc.	

transport: endhost-endhost data transfer	

•  TCP, UDP	

network: routing of datagrams from source
to destination	

•  IP, routing protocols	

link: data transfer between neighboring
network elements	

•  Ethernet, WiFi	

physical: bits “on the wire”	

application

transport

network

link

physical

2

Principles of Network Applications	

Our goals: 	

•  conceptual, implementation aspects of network application
protocols	

•  transport-layer service models	

•  client-server paradigm	

•  peer-to-peer paradigm	

•  examine some popular application-level protocols
•  HTTP
•  SMTP / POP3 / IMAP

Application-Layer Protocols	

•  Messages exchanged between applications	

•  syntax and semantics of the messages between end-hosts	

•  tailored to the specific application (e.g., Web, e-mail)	

•  Messages transferred over transport connection (e.g., TCP)	

•  Popular application-layer protocols	

•  HTTP, SMTP, FTP, SSH, …	

Client Server

GET /index.html HTTP/1.1

HTTP/1.1 200 OK

3

Some Network Apps���
(and Their Protocols)	

•  E-mail (SMTP)	

•  Web (HTTP)	

•  Instant messaging (IRC)	

•  Remote login (Telnet)	

•  P2P file sharing (Napster,

Gnutella, KaZaa)	

•  Multi-user network games 	

•  Streaming stored video

clips (Adobe’s RTMP)	

•  Internet telephone
(Skype)	

•  Real-time video
conference (RTP)	

•  Massively parallel
computing	

Creating a Network Application	

•  Write programs that	

•  run on different end systems and	

•  communicate over a network.	

•  e.g., Web browser software

communicates with browser
server	

•  No app software written for
devices in network core	

•  Network core devices do not

function at app layer	

•  This design allows for rapid app

development	

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

4

Application Architectures	

Peer-to-peer (p2p):	

•  hybrid of p2p and centralized server	

•  pure p2p	

•  hierarchical p2p	

•  end-host (p2p) multicast	

Client-server:	

•  DNS	

•  FTP	

•  SMTP	

•  HTTP	

•  cookies	

•  web caching	

•  CDN	

•  Multi-player games	

Hybrid of P2P and Centralized Server	

Napster:	

•  file transfer P2P	

•  file search centralized: 	

•  peers register IP address and content at central index server	

•  peers query central index server to locate content	

5

Pure P2P Architecture	

•  no always-on server	

•  arbitrary end systems directly communicate	

•  peers are intermittently connected and change IP addresses	

•  example: Gnutella	

•  highly scalable (why?)	

•  but difficult to manage	

•  how to find peer?	

•  how to find content?	

Gnutella	

•  no centralized index server	

•  network discovery using ping and

pong messages	

•  file discovery using query and

queryHit messages	

•  both ping and query messages are

forwarded using the flooding
algorithm: forward on all links except
incoming one	

•  previously seen messages are not
further forwarded	

•  new version of gnutella uses KaZaA-
like supernodes	

A

B

ping

pong

A

B

query

queryHit

6

Hierarchical P2P	

•  FastTrack used by KaZaA, Groskster, iMesh, Morpheus	

•  hierarchical architecture	

•  peers divided into supernodes ���
and ordinary nodes	

•  each supernode keeps an index ���
of all its children’s files	

•  requests are sent to supernodes	

•  supernodes query each other for ���

files not in their local indices	

•  ordinary nodes are “promoted” to supernodes if they have
enough resources and have stayed on network long enough	

•  parallel download of files	

•  eDonkey/eMule also builds a hierarchical network, but the
“supernodes” are dedicated servers, not just more equal peers	

reg

req

Freenet: Anonymous P2P	

•  no index server	

•  requester doesn’t connect

directly to content provider	

•  instead, content passed in a

bucket-brigade fashion from
provider to requester	

•  the next time content is
requested, it is provided from
the nearest cache	

•  requester cannot differentiate
provider from a cache holder
or a forwarding peer (allow for
anonymity)	

maintain a central index of files, so that users
can send requests directly to information hold-
ers. Unfortunately, centralization creates a sin-
gle point of failure that is easy to attack. For
example, if you were trying to phone Michael
Jordan, the simplest way to get his number
would ordinarily be to call directory assistance.
However, because directory assistance is central-
ized, your access can be easily blocked if Jordan
or someone else decides to remove his directory
entry, or if the service goes down.

Systems like Gnutella broadcast queries to every
connected node within some radius. Using this
method, you would ask all of your friends if any
of them knew Jordan’s number, get them to ask
their friends, and so on. Within a few steps, thou-
sands of people could be looking for his number.
Although this process would eventually find your
answer, it is clearly wasteful and unscalable.

Freenet avoids both problems by using a
steepest-ascent hill-climbing search: Each node
forwards queries to the node that it thinks is
closest to the target. You might start searching
for Jordan by asking a friend who once played
college basketball, for example, who might pass
your request on to a former coach, who could
pass it to a talent scout, who might pass it to Jor-
dan’s agent, who could put you in touch with the
man himself.

Requesting files. Every node maintains a routing
table that lists the addresses of other nodes and the
GUID keys it thinks they hold. When a node
receives a query, it first checks its own store, and if
it finds the file, returns it with a tag identifying
itself as the data holder. Otherwise, the node for-
wards the request to the node in its table with the
closest key to the one requested. That node then
checks its store, and so on. If the request is suc-

cessful, each node in the chain passes the file back
upstream and creates a new entry in its routing
table associating the data holder with the request-
ed key. Depending on its distance from the holder,
each node might also cache a copy locally.

To conceal the identity of the data holder, nodes
will occasionally alter reply messages, setting the
holder tags to point to themselves before passing
them back up the chain. Later requests will still
locate the data because the node retains the true
data holder’s identity in its own routing table and
forwards queries to the correct holder. Routing
tables are never revealed to other nodes.

To limit resource usage, the requester gives each
query a time-to-live limit that is decremented at
each node. If the TTL expires, the query fails,
although the user can try again with a higher TTL
(up to some maximum). Because the TTL can give
clues about where in the chain the requester is,
Freenet offers the option of enhancing security by
adding an initial mix-net route before normal
routing. This effectively repositions the start of the
chain away from the requester.

If a node sends a query to a recipient that is
already in the chain, the message is bounced back
and the node tries to use the next-closest key
instead. If a node runs out of candidates to try, it
reports failure back to its predecessor in the chain,
which then tries its second choice, and so on.

Figure 1 depicts a typical request sequence. The
user initiates a request at node A and forwards the
request to B, which forwards it to C. Node C is
unable to contact any other nodes and returns a
“request failed” message to B. Node B then tries
its second choice, E, which forwards the request
to F. Node F forwards the request to B, which
detects a loop and bounces the message back.
Unable to contact any additional nodes, node F
backtracks one step to E, which forwards the
request to its second choice, D, and locates the
file. D returns the file via E and B back to A,
which sends it to the user. Along the way, E, B,
and A might also cache the file.

With this approach, the request homes in closer
with each hop until the key is found. A subsequent
query for this key will tend to approach the first
request’s path, and a locally cached copy can sat-
isfy the query after the two paths converge. Sub-
sequent queries for similar keys will also jump over
intermediate nodes to one that has previously sup-
plied similar data. Nodes that reliably answer
queries will be added to more routing tables, and
hence, will be contacted more often than nodes
that do not.

44 JANUARY • FEBRUARY 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Peer-to-Peer Networking

Figure 1.Typical request sequence.The request moves through the
network from node to node, backing out of a dead-end (step 3) and
a loop (step 7) before locating the desired file.

= Data request

= Data reply

= Request failed
Requester

Data holder

2 3

5
8

9
10

4

1

11

12

6
7

a b

c

d

e
f

7

BitTorrent	

Content distribution:	

•  content is divided into N ���
pieces of 16KB each and ���
sent to N peers	

Content download:	

•  to download a file, a peer must first register with a Tracker	

•  Tracker returns a random list of peers who have the file	

•  peer opens about 5 TCP connections to the provided peers	

•  a peer will only upload to peers from whom it can also

download (“tit-for-tat”)	

Challenges for P2P Networks	

1.  NAT and firewall:	

•  cannot peer with a host you can’t address	

Solutions:	

•  Gnutella:	

•  querier sends PUSH message to responder over the p2p network	

•  responder opens a TCP connection to querier and send over the file	

•  no luck if both are behind firewalls	

•  KaZaA, eDonkey, Skype:	

•  supernodes act as proxy if both peers are behind firewalls	

•  Standards to circumvent NAT (and firewall!): UPnP, STUN	

2.  Download/upload bandwidth asymmetry	

⇒ needs bandwidth subsidy by content provider or CDN, ���

or suffer long download time	

8

Application Architectures	

Peer-to-peer (p2p):	

•  hybrid of p2p and centralized server	

•  pure p2p	

•  hierarchical p2p	

•  end-host (p2p) multicast	

Client-server:	

•  DNS	

•  FTP	

•  SMTP	

•  HTTP	

•  cookies	

•  web caching	

•  CDN	

•  Multi-player games	

Modes of Delivery	

Unicast, broadcast, multicast	

Assuming a video conference ���
involving S, D2, and D3

•  unicasting: two copies of packets from S are sent over
the SR link	

•  broadcasting: one copy of packet sent from S to all
destinations, but packet sent to D1 and D4
unnecessarily	

•  multicasting: one copy of packets from S is sent over
the SR link, R then sends one copy each to D2 and D3

D4

D3

D2

D1

RS

9

Multicast Delivery	

Uses of multicasting:	

•  video conferencing, distance learning, distributed
computation, p2p delivery, multi-player gaming, etc.	

Multicast design goals:	

•  can support millions of receivers per multicast group	

•  receivers can join and leave any group at any time	

•  senders don’t have to know all receivers	

•  senders don’t have to be members of a group to send	

•  there could be more than one sender per group	

Multicast Group Management	

Issues in multicast group management:	

1.  how to advertise/discover a multicast group?	

2.  how to join a multicast group?	

3.  delivering multicast packets to the group	

IPv4 multicast:	

•  use multicast (Class-D) addresses as anonymous
rendezvous point	

•  create a well-known multicast group (address) to
advertise/discover multicast groups	

•  multicast data is sent using UDP	

•  sender sendto() the multicast address	

•  receiver recvfrom() the multicast address	

•  not uniformly deployed throughout the Internet	

10

End-host Multicast	

Issues in multicast group management:	

1.  how to advertise/discover a multicast group?	

2.  how to join a multicast group?	

3.  delivering multicast packets to the group	

End-host (p2p) multicast:	

•  use a well-known, centralized rendezvous server	

•  each peer must register with rendezvous server	

•  rendezvous server returns a (random) list of peers	

•  each peer can support only a limited number of peers	

•  avoid sending duplicate messages and looping:	

•  if single source, construct a shortest-path tree rooted at source	

•  or use flood-and-prune algorithm	

•  prefer peers in same subnet	

Flood and Prune	

How to ensure that only one copy of packet
from S is forwarded by P3 to P4?	

•  keep track of sequence number	

•  only forward packet that comes from���

shortest path from (to) source	

How to ensure that only one copy of packet
from S reaches P3?	

•  only forward if self is on neighbor’s shortest path

from (to) source	

•  prune (P3 telling P2 not to forward pkts from S)	

•  must be done per source if there are multiple sources, ���
each source forming its own multicast group and
(logically) its own multicast tree	

•  must periodically flood in case of membership change	

S!

P3!

P2!P1!

P4!

11

Application Architectures	

Peer-to-peer (p2p):	

•  hybrid of p2p and centralized server	

•  pure p2p	

•  hierarchical p2p	

•  end-host (p2p) multicast	

Client-server:	

•  DNS	

•  FTP	

•  SMTP	

•  HTTP	

•  cookies	

•  web caching	

•  CDN	

•  Multi-player games	

server: 	

•  a process that manages access to a resource	

•  usually has a permanent IP address	

•  waits for connection	

•  server farms for scaling	

•  how do server farms maintain ���
a single IP address externally?	

client:	

•  a process that needs access to a resource	

•  initiates connection with server	

•  may be intermittently connected	

•  may have dynamic IP addresses	

•  do not communicate directly with each other	

Process vs. machine	

Client-Server Computing!

12

Transfer file to and/or from remote host	

•  client: the side that initiates transfer (either to/from remote)	

•  server: remote host	

•  server maintains “state”: ���
current directory, earlier ���
authentication	

•  separate control, data connections	

•  server listens on port 21 for control connection from client	

•  client obtains authorization and send commands over control connection	

•  when server receives a command for a directory listing or file transfer, the server

opens a separate TCP data connection to client	

•  client listens for connection on an ephemeral port	

•  client sends ephemeral port number to server	

•  server uses port 20 for the ftp-data connection to client’s ephemeral port	

•  after each directory/file transfer, server closes ftp-data connection	

What’s the advantage of an out-of-band control channel?	

ftp-data
connection	

port 20	

File Transfer Protocol (FTP, RFC959)	

file transfer	
 FTP	

server	

FTP	

user	

interface	

FTP	

client	

local file	

system	

remote file	

system	

user 	

at host	

ftp-control
connection	

port 21	

FTP Commands	

Sent as ASCII text over control channel	

Sample commands:	

Stevens!

13

FTP Reply Codes	

Meanings of the first and second digits of the reply code:	

Sample reply status code and phrase:	

331 Username OK, password required

125 Data connection already open; transfer starting
425 Can’t open data connection

452 Error writing file	

Stevens!

Fixed Header vs. ASCII Commands	

What are the advantages and disadvantages of using ASCII commands over
fixed header as with IP or TCP?	

Why limit ASCII commands to four letter words?	

Why use numeric code in reply?	

Why bother with ASCII message in reply?	

14

Application Architectures	

Peer-to-peer (p2p):	

•  hybrid of p2p and centralized server	

•  pure p2p	

•  hierarchical p2p	

•  end-host (p2p) multicast	

Client-server:	

•  DNS	

•  FTP	

•  SMTP	

•  HTTP	

•  cookies	

•  web caching	

•  CDN	

•  Multi-player games	

Three major components: 	

•  user agents 	

•  mail servers 	

•  simple mail ���

transfer protocol (SMTP)	

User agent	

•  a.k.a. “mail reader”	

•  composing, editing, reading mail messages	

•  e.g., Thunderbird, Apple Mail, Eudora, Outlook	

•  outgoing, incoming messages stored on server	

Mail servers :!
•  mailbox contains incoming messages for user!
•  message queue contains outgoing (to be sent) mail

messages	

Electronic Mail	

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP
SMTP

SMTP

mail access
protocol

mail message
format

15

Electronic Mail: SMTP (RFC 2821)	

SMTP protocol runs between mail servers to send email
messages!
•  client: sending mail server!
•  server: receiving mail server!

Uses TCP to reliably transfer email message from client to server,
port 25!

•  direct transfer: sending server to receiving server!
•  three phases of transfer!

•  handshaking (greeting)!
•  transfer of messages!
•  closure!

•  command/response interaction!
•  commands: ASCII text!
•  response: status code and phrase!

•  messages must be in 7-bit ASCII!

Sample SMTP Interaction	

 S: 220 hamburger.edu
 C: HELO crepes.fr
 S: 250 Hello crepes.fr, pleased to meet you
 C: MAIL FROM: <alice@crepes.fr>
 S: 250 alice@crepes.fr... Sender ok
 C: RCPT TO: <bob@hamburger.edu>
 S: 250 bob@hamburger.edu ... Recipient ok
 C: DATA
 S: 354 Enter mail, end with "." on a line by itself
 C: Do you like ketchup?
 C: How about pickles?
 C: .
 S: 250 Message accepted for delivery
 C: QUIT
 S: 221 hamburger.edu closing connection

Try it out! % telnet crepes.fr 25
(Real programmers send email by . . . not)	

16

Mail Message Format (RFC 822)	

•  SMTP: protocol for exchanging email messages	

•  RFC 822: standard for text only message format:	

•  header lines, e.g.,	

•  To:	

•  From:	

•  Subject:	

•  different from SMTP commands!	

•  body	

•  the “message”, ASCII characters only	

user
agent

sender’s mail
server

user
agent

SMTP
mail access
protocol

receiver’s mail
server

mail message
format SMTP

mail message
format

header	

body	

blank	

line	

Mail Message Format: MIME	

  MIME: MultIMEdia mail extension (RFC 2045, 2056)	

  additional lines in msg header declare MIME content type	

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data

multimedia data	

type, subtype, 	

parameter declaration	

method used	

to encode data	

MIME version	

encoded data	

example	

17

Mail Access Protocols	

•  SMTP: delivery/storage to receiver’s server	

•  Mail access protocol: retrieval from server	

•  POP: Post Office Protocol (RFC 1939)	

•  IMAP: Internet Mail Access Protocol (RFC 1730)	

•  HTTP: Yahoo! Mail, Gmail, Hotmail, etc.	

user
agent

sender’s mail
server

user
agent

SMTP
mail access
protocol

receiver’s mail
server

SMTP

POP3 and IMAP	

POP3	

•  simple authorization (agent
⇔ server) and download	

•  POP3 is stateless across
sessions	

•  two modes:	

1.  “download and delete”

mode	

•  user cannot re-read e-mail if

he changes client	

2.  “download-and-keep”
mode	

•  copies of messages on

different clients	

IMAP
•  more features (more

complex)!
•  IMAP keeps user state

across sessions	

•  all messages are kept at

the server	

•  manipulation of stored

messages on server!
•  allows user to organize

messages in folders	

•  names of folders and

mappings between message
IDs and folder name	

18

POP3 Dnload and Delete Example	

Authorization phase	

•  client commands: 	

•  user: declare username	

•  pass: password	

•  server responses	

•  +OK
•  -ERR

Transaction phase, client:	

•  list: list message

numbers	

•  retr: retrieve message

by number	

•  dele: delete	

•  quit

 C: list
 S: 1 498
 S: 2 912
 S: .
 C: retr 1
 S: <message 1 contents>
 S: .
 C: dele 1
 C: retr 2
 S: <message 1 contents>
 S: .
 C: dele 2
 C: quit
 S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

Application Architectures	

Peer-to-peer (p2p):	

•  hybrid of p2p and centralized server	

•  pure p2p	

•  hierarchical p2p	

•  end-host (p2p) multicast	

Client-server:	

•  DNS	

•  FTP	

•  SMTP	

•  HTTP	

•  cookies	

•  web caching	

•  CDN	

•  Multi-player games	

19

Web and HTTP	

•  A web page consists of objects	

•  An object can be an HTML file, a JPEG image, a Java

applet, an audio file, a flash video …	

•  A web page comprises a base HTML-file which

includes several referenced objects	

•  Each object is addressable by a URL	

•  Example URL: ���
http://www.someschool.edu/someDept/pic.gif

host name	
 path name	
protocol	

HTTP Overview	

HTTP: HyperText Transfer Protocol	

•  Web’s application layer protocol	

•  client/server model	

•  client: browser that requests, ���
receives, and “displays” Web objects	

•  server: Web server sends objects ���
in response to requests	

•  HTTP 1.0: RFC 1945	

•  HTTP 1.1: RFC 2068	

PC running	

Firefox	

Server 	

runnin
g	

Apach
e Web	

server	

Mac running	

Safari	

HTTP request	

HTTP re
quest	

HTTP response	

HTTP re
sponse	

20

Uses TCP:	

•  client initiates TCP connection (creates socket) to server,
port 80	

•  server accepts TCP connection from client	

•  HTTP messages (application-layer protocol messages)

exchanged between browser (HTTP client) and Web server
(HTTP server)	

•  TCP connection closed	

HTTP is “stateless”	

•  server maintains no information���
about past client requests	

HTTP Overview	

Protocols that maintain “state”
are complex!	

•  past history (state) must be
maintained	

•  if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled	

aside	

Two types of HTTP messages: request, response	

HTTP request message:	

•  in ASCII (human-readable format)	

•  general format:	

HTTP Request Message	

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language: fr

(extra carriage return, line feed)

Carriage return, 	

line feed 	

indicates end 	

of message	

example	

21

Method Types (HTTP 1.1)	

•  GET, POST, HEAD!
•  PUT!

•  uploads file in entity body to path specified in URL field!
•  DELETE!

•  deletes file specified in the URL field!

Uploading form input alternatives!
1.  POST method:!

•  web pages often include form input!
•  input is uploaded to server in entity body!

2.  as parameter to GET URL method:	

•  input is uploaded in URL field of request line:
www.somesite.com/animalsearch?monkeys&banana!

input parameters	

HTTP Response Message	

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

first line: status
line	

(protocol status
code, status
phrase)	

header	

lines	

data, e.g., 	

requested	

HTML file	

A few sample codes:	

200 OK

-  request succeeded, requested object later in this message	

301 Moved Permanently
-  requested object moved, new location specified later in this

message (Location:)	

400 Bad Request
-  request message not understood by server	

404 Not Found
-  requested document not found on this server	

505 HTTP Version Not Supported

example	

