NAT: Network Address Translation

Advantages:
• can change address of devices in local network without notifying outside world
• devices inside local net not explicitly addressable by or visible to the outside world (a security plus)

Disadvantage:
• devices inside local net not explicitly addressable by or visible to the outside world, making peer-to-peer networking that much harder
• routers should only process up to layer 3 (port#'s are app layer objects)
• address shortage should instead be solved by IPv6, instead NAT hinders the adoption of IPv6 (nothing wrong with that?)

Lesson:
Be careful what you propose as a “temporary” patch, “temporary” solutions have a tendency to stay around beyond expiration date

“The evil that men do lives after them, the good is oft interred with their bones.”
– Shakespeare, Julius Caesar

The Internet Network Layer

Host, router network layer functions:

<table>
<thead>
<tr>
<th>Transport layer: TCP, UDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing protocols</td>
</tr>
<tr>
<td>• path selection</td>
</tr>
<tr>
<td>• RIP, OSPF, BGP</td>
</tr>
<tr>
<td>Forwarding protocol (IP)</td>
</tr>
<tr>
<td>• addressing conventions</td>
</tr>
<tr>
<td>• datagram format</td>
</tr>
<tr>
<td>• packet handling conventions</td>
</tr>
<tr>
<td>“Signalling” protocol (ICMP)</td>
</tr>
<tr>
<td>• error reporting</td>
</tr>
<tr>
<td>• router “signaling”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Link layer: Ethernet, WiFi, SONET, ATM</th>
</tr>
</thead>
</table>

| Physical layer: copper, fiber, radio, microwave |
Routing on the Internet

Routers on the Internet are store and forward routers:
- Each incoming packet is buffered
- Packet's destination is looked up in the routing table
- Packet is forwarded to the next hop towards the destination

Routing on the Internet: Example

How does a router construct its routing table?

How does a router know which is the next hop towards a destination?

Use a routing protocol to propagate (and update) reachability information
Graph Abstraction

Graph: $G = \{N, E\}$

$N =$ set of nodes = \{u, v, w, x, y, z\}

$E =$ set of links = \{(u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z)\}

c(u,v) =$ cost of link (u,v), assume full-duplex (bidirectional)

• e.g., $c(w,z) = 5$
• cost could always manually assigned, e.g., based on price
• could be hop count, or inversely related to bandwidth, reliability
• or could be dynamic, e.g., proportionally related to congestion

Cost of path $(x_1, x_2, x_3, \ldots, x_p)$ = $c(x_1,x_2) + c(x_2,x_3) + \ldots + c(x_{p-1},x_p)$

What is the least-cost path between node u and z?

Routing algorithm: algorithm that finds least-cost path

Routing Algorithm Classification

Centralized or decentralized algorithm?

Global or distributed, local information?

Global info:
• all routers have complete topology, link cost info
• “link state” algorithms

Local info:
• routers know of only physically-connected neighbors, link costs to neighbors
• iterative process of computation, exchange of info with neighbors
• “distance vector” algorithms

Static or dynamic routing?

Static routing:
⇒ routes change slowly over time

Dynamic routing:
⇒ routes change more quickly
⇒ periodic update in response to link cost changes
Dynamic Programming

- Used when a problem can be divided into subproblems that overlap
- Solves each subproblem once and store the solution in a table
 - if the same subproblem is encountered again, simply look up its solution in the table
 - reconstruct the solution to the original problem from solutions to the subproblems
 - the more overlap the better, as this reduces the number of subproblems

DP used primarily to solve optimization problem, e.g., find the shortest, longest, “best” way of doing something

Requirement: an optimal solution to the problem must be a composition of optimal solutions to all subproblems

In other words, there must not be an optimal solution that contains suboptimal solution to a subproblem

Distance Vector Algorithm

Origin of the name “dynamic programming”:
- Bellman’s shortest path algorithm (1957)
- dynamic: multi-stage, time-varying process
- programming: planning, decision making by a tabular method

Bellman’s shortest path algorithm:
- centralized distance vector algorithm
- route table $D[\cdot]$ encodes shortest path

Define: $D[x,y] := \text{cost of least-cost path from } x \text{ to } y$
Then: $D[x,y] = \min \{ c(x,v) + D[v,y] \}$,
where v is a neighbor of x and min is taken over all neighbors of x

Define two other tables:
- $L[\cdot]$: link table
- $H[\cdot]$: next hop table
Bellman’s Algorithm: Initial Values

<table>
<thead>
<tr>
<th>L</th>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>f_4</th>
<th>f_5</th>
<th>f_6</th>
<th>f_7</th>
<th>f_8</th>
<th>f_9</th>
<th>f_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>u</td>
<td>v</td>
<td>x</td>
<td>w</td>
<td>y</td>
<td>z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>v</td>
<td>x</td>
<td>w</td>
<td>y</td>
<td>z</td>
<td>w</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$c(n,m)$</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Initial values:

<table>
<thead>
<tr>
<th>H</th>
<th>u</th>
<th>v</th>
<th>w</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>l_0</td>
<td>l_1</td>
<td>l_{10}</td>
<td>l_2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>v</td>
<td>l_1</td>
<td>l_0</td>
<td>l_4</td>
<td>l_3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>w</td>
<td>l_{10}</td>
<td>l_4</td>
<td>l_5</td>
<td>l_1</td>
<td>l_7</td>
<td>l_6</td>
</tr>
<tr>
<td>x</td>
<td>l_2</td>
<td>l_3</td>
<td>l_4</td>
<td>l_0</td>
<td>l_6</td>
<td>-</td>
</tr>
<tr>
<td>y</td>
<td>-</td>
<td>-</td>
<td>l_7</td>
<td>l_6</td>
<td>l_0</td>
<td>l_9</td>
</tr>
<tr>
<td>z</td>
<td>-</td>
<td>-</td>
<td>l_8</td>
<td>-</td>
<td>l_9</td>
<td>l_0</td>
</tr>
</tbody>
</table>

H_0: loopback

Bellman’s Algorithm: Example

```java
do {
    for each node $i$ in graph do {
        for each node $k$ not $i$ in graph do {
            for each $j$ neighbor of $i$ {
                $m = c(i,j) + D[j][k]$;
                if ($m < D[i][k]$) {
                    $D[i][k] = m$;
                    $H[i][k] = index$ of $L[]$ where $n=i,m=j$;
                }
            }
        }
    }
} while there has been a change in $D[]$;
```

Initial values:

<table>
<thead>
<tr>
<th>D</th>
<th>u</th>
<th>v</th>
<th>w</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>v</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>w</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>x</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>∞</td>
</tr>
<tr>
<td>y</td>
<td>∞</td>
<td>∞</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>z</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
<td>∞</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
Distributed Distance Vector Algorithm

Ford-Fulkerson (1962): modified Bellman’s algorithm to a distributed version (a.k.a. Bellman-Ford algorithm)

Basic idea:
- Each node periodically sends its own distance estimates to neighbors
- When node i receives new distance estimates from a neighbor, it updates its own distance estimates using the Bellman-Ford equation:

\[
D[x,y] = \min \{c(x,v) + D[v,y]\}, \text{ for each node } y \in N
\]

- Under stable conditions, the estimate \(D[x,y]\) converges to the actual least cost
Distributed DVA Implementation

Each node i:
- knows the cost to each neighbor
- keeps entries of i's table for local links
- Node i maintains $D(i,*) = \{D[i, k]: k \in N\}$
- i's routing table consists of the i-th row of tables D and H
- sends i-th row of table D as route update from i
- upon receiving a route update from another node, i recomputes its routing table (row i of D and H)

Example:
- u's link table: $[l_1, l_2]$
- u's routing table:

<table>
<thead>
<tr>
<th>dest</th>
<th>u</th>
<th>v</th>
<th>w</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>H</td>
<td>l_1</td>
<td>l_1</td>
<td>l_2</td>
<td>l_2</td>
<td>l_2</td>
<td>l_2</td>
</tr>
</tbody>
</table>

- u's route update/distance vector:

<table>
<thead>
<tr>
<th>dest</th>
<th>u</th>
<th>v</th>
<th>w</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
Distributed DVA

Scenario:
• at time t_0: all nodes “wake up” and send route updates containing their reachability information
• at time t_1: all nodes have heard from their neighbors and update their routing tables and send out route updates
• at time t_2: no further changes

Route Updates

Even statically assigned link cost can change over time, e.g., when a link goes down (breaks)

Each node:
- waits for change in local link cost or msg from neighbor
- recomputes distance estimates
- if distance to any dest has increased, notify neighbors or send periodic update

Design question: how does a router communicate changes in link cost to other routers?
- on-demand/triggered updates when cost increases (“bad news”)
- “good news” travels slowly with periodic updates, with random periods

Design principle: soft-state protocol
Propagating Link Breakage

Scenario:
- time t_5: link AB breaks; A and B discover failure, update table, and send out route updates
- t_6: C, D, and E receive A's and B's route updates and in turn update their own routing tables and send out their route updates
- t_7: A, B, and C receive route updates sent at time t_6 update their routing tables and send out their route updates
- t_8: no more changes

Bouncing Effect

One big problem with distributed DV algorithm:
- Bounding Effect causes routing loop

Example scenario (all examples are contrived, to illustrate problems):
- time t_5: cost of link EC jumps to 10 (e.g., due to load increase), shortly after, periodic update from B arrives at E and C, both end up using B as next hop to each other
- t_6: D gets an update from E, A and D both send out updates
- t_7: link BC breaks and A's update arrives at B
- t_8: A and E now goes through B to C
- Events at t_7 and t_8 iterate until cost of B to C through A = 10, at which time, E switches to the EC link
- meanwhile, data packets from A or B to C loop until TTL expires
Counting to \(\infty \)

As a means to resolve routing loop

Example scenario:
- time \(t_3 \): link DE breaks, A sends out a periodic route update
- \(t_4 \): D gets an update from A and sends out update, all paths go through A
- \(t_5 \): link AB breaks and D’s update arrives at A, A updates route table: all paths go through D
- \(t_6 \): bouncing effect exists between A and D and routing loops are formed for destinations C and E

Each update brings cost up by one, detect that there’s a loop when cost reaches \(\infty \)

RIP (Routing Information Protocol)

An implementation of distance vector algorithm
- distributed with BSD-UNIX in 1982
- distance metric: # of hops (max 15 hops, \(\infty \) = 16 hops)
- distance vectors sent/advertised once every 30 secs
 - takes 8 minutes to count to \(\infty \) and detect loop if we rely only on periodic updates
 - link failure info quickly propagated with triggered updates
- distance vectors sent using UDP
- each advertisement lists up to 25 destination nets
- if no advertisement heard after 180 sec => neighbor/link declared down
 - all routes via neighbor invalidated
 - new advertisements sent to all other neighbors (triggered updates)
 - neighbors in turn send out new advertisements (if cost increased)

RIP routing tables managed by application-level process called route-d (daemon)
Routing Loop

Problems with distributed DVA:
- bouncing effect
- routing loop
- counting to ∞

Cause of routing loop (in 3 variations):
- inconsistent routing tables
- route updates do not reflect reality
- routers do not know when they are in their neighbor’s path to a destination

Heuristics (not solution) to alleviate problem:
- triggered updates to shorten convergence time
- split horizon
- split horizon with poisonous reverse
- path hold-down
- route poisoning

Loop-free routing:
- path vector
- path finding/source tracing
- diffusing computation
- link reversal

Split Horizon

Idea: don’t advertise reachability to next-hop neighbor

Example scenario:
- time t_2: link DE breaks, D sends out triggered update, A sends out a periodic route update
- t_3: D gets an update from A, all paths go through A. **Doesn’t send reachability to B, C, and E to A because it uses A as next hop to get to these nodes**
- t_4: link AB breaks and D’s update arrives at A, A updates route table: only D is now reachable
Why Split Horizon is not a Solution

Example scenario:
• time t_2: A and D send periodic updates to each other

\cdots

• t_4: D and A do not update each other's path to B, C, and E because they're using each other as next hop

Both must rely on soft-state to stale entries

Split Horizon with Poisonous Reverse

Idea: advertise cost ∞ to next-hop neighbor

Example scenario:
• time t_2: A and D send periodic updates to each other

\cdots

• t_4: D and A update each other's path to B, C, and E as cost ∞ because they're using each other as next hop
Why Both are not Solution

Example scenario (consider only destination \(D \)):
- \(t_2 \): links \(AB \) and \(DE \) break simultaneously
- \(t_3 \): assumes \(B \) receives \(E \)'s update, but \(C \) doesn't:
 - \(C \) advertises reachability to \(D \) at cost 2 to \(B \)
- \(t_4 \): \(B \) advertises reachability to \(D \) at cost 3 to \(E \)
- \(t_5 \): \(E \) advertises reachability to \(D \) at cost 4 to \(C \)
- \(t_6 \): \(C \) advertises reachability to \(D \) at cost 5 to \(B \):
 - bouncing effect exists between \(B, C, \) and \(E \)

Routing Loop

Problems with distributed DVA:
- bouncing effect
- routing loop
- counting to \(\infty \)

Cause of routing loop (in 3 variations):
- inconsistent routing tables
- route updates do not reflect reality
- routers do not know when they are in their neighbor's path to a destination

Heuristics (not solution) to alleviate problem:
- triggered updates to shorten convergence time
- split horizon
- split horizon with poisonous reverse
- path hold-down
- route poisoning

Loop-free routing:
- path vector
- path finding/source tracing
- diffusing computation
- link reversal
Path Hold-down

Idea: do not switch route for n update periods after cost increase

Each node's cost to A,
with hold-down period $n = 2$

<table>
<thead>
<tr>
<th>time</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>t_1</td>
<td>∞</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>t_2</td>
<td>∞</td>
<td>∞</td>
<td>3</td>
<td>∞</td>
</tr>
<tr>
<td>t_3</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>t_4</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>10</td>
</tr>
<tr>
<td>t_5</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>t_6</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>t_7</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

Smaller hold-down period $n = 1$

<table>
<thead>
<tr>
<th>time</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>t_1</td>
<td>∞</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>t_2</td>
<td>3</td>
<td>∞</td>
<td>3</td>
<td>∞</td>
</tr>
<tr>
<td>t_3</td>
<td>∞</td>
<td>4</td>
<td>∞</td>
<td>4</td>
</tr>
<tr>
<td>t_4</td>
<td>5</td>
<td>∞</td>
<td>5</td>
<td>∞</td>
</tr>
<tr>
<td>t_5</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

Route Poisoning

Idea: advertise cost ∞ if cost from next hop has been increasing for n updates
- does not actually change cost in routing table entry, only what is advertised

Can be used with both path hold-down and split horizon with poisonous reverse

All heuristics rely on counting to ∞ to detect loop, they differ only in convergence time
Path Vector

Idea:
- instead of sending only the next hop to a destination in distance vector, send the full path to each destination
- a router adopt a neighbor as the next hop to a destination only if it is not itself in neighbor’s path to the destination
- a router prepends itself to all of its paths before propagating them further

Path vector is used in BGP

A’s path vector:

<table>
<thead>
<tr>
<th>dest</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>metric</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>path</td>
<td>A</td>
<td>AB</td>
<td>ABC</td>
<td>AD</td>
<td>ADE</td>
</tr>
</tbody>
</table>

Distributed DVA Deployment History

- Early days: GGP, HELLO, Fuzzball (ARPANET, early Internet)
- 1988 (standardized): RIP (routed)
 - v1: 30 secs periodic update with triggered updates and split horizon with poisonous reverse
 - v2 (1993): CIDR
 - v1: split horizon, with path hold-down (n=2)
 - v2: 90 secs periodic update with triggered updates, route poisoning
- 1993: EIGRP (cisco): Enhanced IGRP
 - uses DUAL, supports CIDR
- 1994: BGPv4 for inter-domain routing
 - uses path vector, supports CIDR, runs on TCP
Link State Routing

Observation: loop can be prevented if each node knows the actual network topology

In link-state routing, each node:
• floods the network with the state (up, down) of its links
• uses Dijkstra’s Shortest Path First (SPF) algorithm to compute a shortest-path tree

What is advertised:
• DV: all nodes reachable from me, advertised to all neighbors
• LS: all my immediate neighbors, advertised to all nodes

Dijkstra’s Shortest Path First (SPF) Algorithm

A greedy algorithm for solving single-source shortest path problem
• assume non-negative edge weights
• even if we’re only interested in the path from s to a single destination, d, we need to find the shortest path from s to all vertices in G (otherwise, we might have missed a shorter path)
• if the shortest path from s to d passes through an intermediate node u, i.e., $P = \{s, \ldots, u, \ldots, d\}$, then $P' = \{s, \ldots, u\}$ must be the shortest path from s to u
Dijkstra’s Shortest Path First (SPF) Algorithm

SPF(startnode s)
{ // Initialize
 table = createtable(|V|); // stores spf, cost, predecessor
 table[*].spf = false; table[*].cost = INFINITY;
 pq = createpq(|E|); // empty pq
 table[s].cost = 0;
 pq.insert(0, s); // pq.insert(cost, v)
 while (!pq.isempty()) {
 v = pq.getMin();
 if (!table[v].spf) { // not on sp tree
 table[v].spf = true;
 for each u = v.neighbors() {
 newcost = weight(u, v) + table[v].cost;
 if (table[u].cost > newcost) {
 table[u].cost = newcost;
 table[u].pred = v;
 pq.insert(newcost, u);
 }
 }
 }
 }
 extract SPF from table;
}
Dijkstra's SPF Example (v = s = b)

<table>
<thead>
<tr>
<th>u</th>
<th>spf</th>
<th>cost</th>
<th>pred</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>F</td>
<td>3</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>T</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>c</td>
<td>F</td>
<td>5</td>
<td>b</td>
</tr>
<tr>
<td>d</td>
<td>F</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>F</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>F</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>

Dijkstra's SPF Example (v = a)

<table>
<thead>
<tr>
<th>u</th>
<th>spf</th>
<th>cost</th>
<th>pred</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>T</td>
<td>3</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>T</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>c</td>
<td>F</td>
<td>4</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>F</td>
<td>8</td>
<td>a</td>
</tr>
<tr>
<td>e</td>
<td>F</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>F</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>
Dijkstra’s SPF Example ($v = c$)

<table>
<thead>
<tr>
<th>u</th>
<th>spf</th>
<th>cost</th>
<th>pred</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>T</td>
<td>3</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>T</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>c</td>
<td>T</td>
<td>4</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>F</td>
<td>6</td>
<td>c</td>
</tr>
<tr>
<td>e</td>
<td>F</td>
<td>8</td>
<td>c</td>
</tr>
<tr>
<td>f</td>
<td>F</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>

Dijkstra’s SPF Example ($v = d$)

<table>
<thead>
<tr>
<th>u</th>
<th>spf</th>
<th>cost</th>
<th>pred</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>T</td>
<td>3</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>T</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>c</td>
<td>T</td>
<td>4</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>T</td>
<td>6</td>
<td>c</td>
</tr>
<tr>
<td>e</td>
<td>F</td>
<td>8</td>
<td>c</td>
</tr>
<tr>
<td>f</td>
<td>F</td>
<td>11</td>
<td>d</td>
</tr>
</tbody>
</table>
Dijkstra’s SPF Example \((v = e)\)

<table>
<thead>
<tr>
<th>u</th>
<th>spf</th>
<th>cost</th>
<th>pred</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>T</td>
<td>3</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>T</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>c</td>
<td>T</td>
<td>4</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>T</td>
<td>6</td>
<td>c</td>
</tr>
<tr>
<td>e</td>
<td>T</td>
<td>8</td>
<td>c</td>
</tr>
<tr>
<td>f</td>
<td>F</td>
<td>9</td>
<td>e</td>
</tr>
</tbody>
</table>

Dijkstra’s SPF Example \((v = f)\)

<table>
<thead>
<tr>
<th>u</th>
<th>spf</th>
<th>cost</th>
<th>pred</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>T</td>
<td>3</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>T</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>c</td>
<td>T</td>
<td>4</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>T</td>
<td>6</td>
<td>c</td>
</tr>
<tr>
<td>e</td>
<td>T</td>
<td>8</td>
<td>c</td>
</tr>
<tr>
<td>f</td>
<td>T</td>
<td>9</td>
<td>e</td>
</tr>
</tbody>
</table>
Dijkstra’s SPF Algorithm

Algorithm complexity: \(N \) nodes
- each iteration: extract minHeap \(O(\log N) \)
- total \(O(N \log N) \)

Each neighbor of each node could also potentially go thru the minHeap once: \(O(|E| \log N) \)
Total: \(O(N \log N + |E| \log N) = O(|E| \log N) \)
- \(|E| \geq |N| - 1 \) for a connected graph

Oscillations possible:
e.g., link cost = amount of carried traffic, asymmetric link cost

OSPF (Open Shortest Path First)

“Open”: publicly available
Uses Link State algorithm
- LS packet dissemination
 - advertisements disseminated to entire network
 (via flooding protocol: forward to all interfaces except the incoming one)
 - advertisement carried in OSPF messages directly over IP (rather than TCP or UDP)
- route computation using Dijkstra’s algorithm
- topology map at each node
 - OSPF is not loop free due to delay in topology propagation
 - maintaining LS database consistency is hard due to router reboot:
 - how to determine which LS is newer?
OSPF (Open Shortest Path First)

Advance features (not in RIP):
• security: all OSPF messages authenticated (to prevent fake advertisement)
• multiple same-cost paths allowed (only one path in RIP)
• for each link, multiple cost metrics for different TOS (e.g., satellite link cost set to “low” for best effort; high for real time)
• integrated uni- and multicast support:
 • Multicast OSPF (MOSPF) uses same topology data base as OSPF
 • Hierarchical OSPF in large domains