
In many applications it’s useful to have the
ability to create a texture of arbitrary size

given a small input sample. Texture synthesis techniques
perform this operation. A texture transfer algorithm, on
the other hand, takes two images—the source texture
and the target image—as input. The algorithm modi-

fies the target image, replacing
some high-frequency information
with the source texture. Although
synthesis and transfer operations
share many of the same challenges,
there are significant differences.
First, a clear criterion of success
exists in texture synthesis: the result
has to look like the input. For tex-
ture transfer, the degree of similar-
ity with the original target image is
usually adjusted based on user pref-
erences. The case of artistic style
transfer is probably the best illus-
tration of this. The definition of
artistic style is subjective; success in
attaining this style is a matter of per-
sonal preference. Therefore, in a
typical texture transfer algorithm
application, users would take a trial
and error approach and experiment
with different parameter values.

This inherent human involvement imposes addition-
al requirements on a texture transfer algorithm. The
algorithm must provide a sufficiently rich space of
results to explore. This is contrary to texture synthesis
where an algorithm that doesn’t require any human
involvement is a better choice in most cases. Although
current texture transfer methods often allow different
degrees of similarity between the result and the target
image, insufficient computational speed hampers truly
exploratory use of these techniques. This is not just an
inconvenience—as it would be in texture synthesis—
but effectively reduces the space of results to just a few
possibilities that the user has the patience to wait for.

This article presents an algorithm for texture trans-

fer between images that is up to several orders of mag-
nitude faster than current state-of-the-art techniques.
I will demonstrate how the technique can leverage self-
similarity of complex images to increase resolution of
some types of images and to create novel, artistic look-
ing images from photographs without any prior artistic
source. Compared to other alternatives, methods based
on texture transfer are global in the sense that the user
need not deal with details such as defining and paint-
ing individual brush strokes. Texture transfer methods
are also more general since they don’t need to emulate
any particular artistic style (line drawing, hatching,
realistic oil painting, and so on). Not surprisingly, there
is a price to pay for this generality—an algorithm
designed for a specific artistic style will most likely pro-
duce results superior to those presented here for that
particular case.

Basic technique
I use the coherent synthesis technique as the basis of

my method.1 Primarily a hands-off texture synthesis
algorithm, coherent synthesis works by growing texture
patches of irregular size, one pixel at a time. It proceeds
in scan line order, choosing the best pixel from a short
candidate list. This list is based on locations that already
synthesized pixels were taken from. Each already syn-
thesized pixel in a small (typically, L-shaped 5 × 2.5)
neighborhood contributes its appropriately forward-
shifted neighbor in the texture image to the list. I can
create certain texture transfer examples by extending
the notion of the neighborhood to a full square that
includes corresponding parts of the target image, as
shown in Figure 1.

This technique is fast but has several important limi-
tations when applied to texture transfer. First, dozens
of iterations might be necessary to obtain a sufficient
similarity between the target image and the result,
defeating the algorithm’s speed advantages and creat-
ing flat images by destroying fine texture features. A sim-
ple increase of the target image’s weight in the
neighborhood norm does not fix this problem since it’s
mostly due to the small number of candidates examined

Nonphotorealistic Rendering

A fast texture transfer

technique produces results

similar to state-of-the-art

methods. This article

presents several applications

of the method including

artistic style transfer, image

enhancement, and novel

nonphotorealistic filter

creation.

Michael Ashikhmin
Stony Brook University

Fast Texture
Transfer

2 July/August 2003 Published by the IEEE Computer Society 0272-1716/03/$17.00 © 2003 IEEE

by the algorithm at each synthesis step. Usually the
approach creates just one or two candidates as dictated
by growing patches, and the algorithm can’t terminate
this growth process, potentially, until it runs into the
end of the original image. This also can produce notice-
able horizontal edges when the growth process finally
terminates.

My solution is to increase the algorithm’s search
space. You must carry this out carefully since the low
number of candidates is the primary source of the orig-
inal method’s efficiency and the computational cost can
become prohibitive if you need interactive feedback.
You must also make sure that visual results are not
degraded. An unrestricted search over an entire texture
image gives the results found in Wei and Levoy,2 which
are not always superior to coherent synthesis.1 Howev-
er, a slight increase in search space dramatically
improves the convergence rate of coherent synthesis
without compromising visual results.

In particular, after creating a candidate list for a pixel
as I’ve described elsewhere,1 with some user controlled
probability p, I add a single candidate taken from a ran-
dom location in the texture image. Surprisingly small
values around p = 0.05—which corresponds to con-
sidering (but not necessarily accepting), on average,
one extra candidate per 20 synthesized pixels—can
make big difference in terms of the quality of the syn-
thesized image. This procedure also reduces the
amount of perceived boundary discontinuity since the
smaller patches produced generally fit together better.
This obtains artistic filtering results similar to image
analogies3 but at a fraction of the cost while using only
the simpler-to-implement coherent synthesis strategy.
It also solves the problem of horizontal edges men-
tioned previously, since it becomes unlikely that the
algorithm does not terminate patch growth before run-
ning into the bottom image boundary. Of course, mul-
tiple iterations can still occur1,4 but a single iteration is
sufficient in most cases. Better results could potential-
ly occur by adding a specially chosen extra candidate
instead of a purely random one, as suggested by Zelin-
ka and Garland.5 Because this would require costly pre-
processing of the source image, I use the simpler and
faster random choice. The proposed extension will not,
in most cases, benefit texture synthesis since smaller
patches will fail to capture large-scale features of the
underlying texture.

A second useful modification is problem-specific
image similarity metrics. The original neighborhood
difference measure D for the case of texture transfer
is the pixelwise L2 difference between a neighbor-
hood in the source texture and a combined neigh-
borhood made from two L-shaped parts put together1

(see Figure 1):

D2(Nr, Ns) = D2(NLr, NLs) + D2(NLt, NLs) (1)

where indexes refer to source texture (s), target (t), and
result (r) images, and subscript L in NL indicates an L-
shaped neighborhood. The two parts of Equation 1 can
be arbitrarily weighted with respect to each other. In
particular, it’s beneficial to use only the second part of

Equation 1—that is, the difference with the target—as
the measure of neighborhood similarity for some of the
applications I discuss in later sections. Visual patch
coherence is sufficiently maintained in this case by the
appropriate choice of candidates, which favors patch
growing by itself, so additional coherence enforcement
by the difference measure is not necessary. This modi-
fication can significantly improve the results of the basic
coherent synthesis technique for these applications.
Since neighborhood comparison is a part of the inner
loop of the algorithm, I’ve also effectively reduced com-
putational load by a factor of two. For artistic style trans-
fer I will completely replace Equation 1 by a different
measure. Along with the search space extension, these
changes enable effective use of the algorithm in sever-
al applications.

Applications
All examples presented here use 5 × 5 neighbor-

hoods. Similarly to Hertzmann et al.,3 I use luminance
values only during synthesis and keep color compo-
nents of the target image unchanged, although no dis-
tribution equalization of target and texture images is
necessary. I measured runtimes on a 1.2-GHz Pentium
IV PC; they are all less than a few seconds. This time is
sufficient to provide interactive feedback for the user
and allow fast exploration of a rich result space by
adjusting algorithm parameters such as extra random
candidate probability p and an extra location-specific
candidate probability. A single iteration of the algo-
rithm obtained all results. Original images are avail-
able at http://www.cs.sunysb.edu/~ash/ftt/. The

IEEE Computer Graphics and Applications 3

Input image

Output image

Completed portion

Target image

1 (a) Each pixel in this L-shaped
neighborhood generates a shifted
candidate pixel (black) according to
its original position in the input
image (hatched). A single random
candidate (light blue with dashed
lines) is added with probability p.
The candidate whose neighbor-
hood best matches the one in the
output image according to an
application-specific similarity metric
is chosen as the next pixel value. In
the original algorithm, the com-
plete neighborhood for matching is
composed from two L-shaped
halves, with top half coming from
the already synthesized part of the
output image and (b) the bottom
half from the target image.

(a)

(b)

reader is encouraged to examine them directly since
differences among some images shown are quite sub-
tle. This is especially true for Figure 2.

Artistic style transfer
Texture transfer applications dealing with artistic styles

will probably benefit the most from a fast algorithm.
These applications are inherently user-oriented and inter-
active feedback is therefore highly desirable. In artistic
style transfer I set an artistic drawing or painting as the
source texture and a photograph as the target image. (I
don’t use extra correspondence maps.) I modified the
neighborhood difference metric to find the best candi-
date from the now extended list based on developments
presented in Hertzmann et al. and in Efros and Free-
man.3,4 Both of these papers found blurred versions of
images useful for artistic style transfer. This corresponds
to the general idea of preserving large features of the pho-
tograph but changing high-frequency details to match
those of the artistic image. I therefore define the measure
of neighborhood difference as the sum of two parts: the
difference of neighborhood averages between the source
and the target, and the L2 pixelwise difference of only
high-frequency components in the L-shaped neighbor-
hoods of the result and the source texture image:

Here N denotes corresponding neighborhood averages
and n is the number of pixels used to compute the L2

norm. To make this definition work properly, I initialize
the result by copying the target image into it. The user
can adjust the weighting w of the first part and extra
candidate probability p based on a subjective notion of
style; for all examples shown in this article, w = 1.

Figures 3 and 4 present the results of this process for
several images and reflect my subjective judgment
choices. Figure 5 shows the original photograph. To
facilitate comparison with previous results, I use the
same examples used in Hertzmann et al.,3 even though
some present rather difficult cases for this algorithm
(such as the hatching example in Figure 3b for which
using directional information would have been benefi-
cial). Results obtained using an image analogies tech-
nique are available at http://www.mrl.nyu.edu/
projects/image-analogies/. Figure 3d shows an image
obtained with the original algorithm, which still is not
completely converged even after six iterations.1

D N N

w N N n D N N N N

r s

s t Lr Lr Ls Ls

2

2 2 21

,

/ ,

() =

−() +() − −()

Nonphotorealistic Rendering

4 July/August 2003

2 Varying the algorithm’s parame-
ters can obtain different artistic
styles: (a) original image, m = 1,
p = 0.1, pl = 0; (b) m = 2, p = 0, pl =
0.03; (c) m = 4, p = 1.0, pl = 0.1;
(d) m = 8, p = 0.5, pl = 0.01;
(e) m = 2, p = 0.2, pl = 0. Image size
is 430 × 430 pixels. No additional
artistic samples were used.

3 (a) Style transfer results for a
photograph using (b) hatching and
(c) charcoal drawing. Extra candi-
date probability p values: 0.2, 0.5.
Total times: 0.6 and 0.9 second.
(d) Charcoal example after six itera-
tions of coherent synthesis. Total
time: 3.5 seconds. All images are
366 × 554 pixels.

(a) (b) (c)

(d) (e) (f)

(a) (b) (c) (d)

Artistic image examples can be found at http://www.
cs.sunysb.edu/~ash/ftt. A pointillist painting example
demonstrates limitations of using just a luminance chan-

nel for synthesis. Overall results are comparable to those
presented in Hertzmann et al.3and Efros and Freeman,4

with runtimes around 1 or 2 seconds compared to dozens
of minutes for the image analogies technique, and about
a minute for the image quilting technique (numbers for
alternative techniques are rough estimates obtained by
scaling those provided by the authors). Both of these
techniques are significantly more complex to implement
than the algorithm discussed here. In the case of line art
drawings, my results don’t have long, well-separated
lines, but they are still visually pleasing. Sticking to the
choice of simplicity and computational efficiency, I did
not include oriented filter response in the neighborhood
difference measure as suggested by Hertzmann et al.3

This feature can be easily added if necessary. It’s also easy
to restrict the area of the artistic image used in the trans-
fer process to avoid effects similar to somewhat strange
looking vertically striped areas in the hatched image,
which are due to transfer from the corresponding area
in the original artistic sample. I did not perform this extra
intervention for any of presented examples.

Super resolution
Texture transfer methods can artificially increase res-

olution of some types of images. It’s well known that
visually complex images contain a significant amount
of details on many scales. Moreover, some images have
self-similar appearance, which for my purposes means
that a version of an image scaled to some different res-
olution looks similar to the original. (Some authors6 use
the term self-similarity to describe similarity of texture
appearance across the image—a property more com-
monly referred to as stationarity.)

Typical examples of such self-similar behavior include
various images of natural fractal objects such as clouds,
waves, woods, or entire terrains. You can leverage this
property to increase an image’s resolution by applying
my texture transfer algorithm. First, prepare a high-res-
olution version of the image by magnifying the original
using standard methods—for example, by applying a
cubic or a box filter. Then set this image as the target and
use the original (or its down-sampled version) as the
source texture. Since the desired result should look sim-
ilar to the initial image, we can infuse high-frequency
details by taking them from the original. Simple mag-
nification, on the other hand, will produce a noticeably

IEEE Computer Graphics and Applications 5

4 (a) Artistic style transfer results for Van Gogh (extra
candidate probability p = 0.04), (b) pointillist (0.15), (c)
watercolor (0.15), (d) Manet (0.08). Running times
were 0.9, 0.95, 1.0, and 0.95 seconds respectively. All
images are 640 × 500 pixels.

(a)

(b)

(c)

(d)

5 Original
photograph
used in artistic
style transfer
examples
shown in Figure
4. (Courtesy of
John Shaw)

blurry version for these types of images, but is neces-
sary to guide the positioning of large-scale features in
the result. Contrary to the super-resolution procedure
where high-resolution cutouts were used,3 I use only a
single image of a given initial resolution.

To help the algorithm converge faster and to increase
its result space, you can also add extra candidates not
only from random positions in the source texture as
before but also from positions given by dividing current
(x, y) offset in the result image by the magnification fac-

tor m. This is again performed with some user controlled
probability pl . Figure 6 shows results for a typical frac-
tal aerial photograph.

Novel artistic styles
For general rather than fractal images, the strategy

presented in the previous section would not give a good
super resolution appearance due to the limited, if any,
self-similarity in this case. However, I still found the strat-
egy useful to create artistic looking versions of an image.

Nonphotorealistic Rendering

6 July/August 2003

6 Super-resolution example.
(a) Original image from VisTex
(http://www-white.media.mit.edu/
vismod/imagery/VisionTexture/vis-
tex.html) texture database,
(b) magnification by a factor of
m = 4 using a box filter, and
(c) using texture transfer where
p = 0; pl = 0.03—image in (b) acted
as the target. In this case, using
only location-specific candidates
was sufficient to obtain good
enough results.

Related Work
Extensive review of research on either nonphotorealistic

rendering or textures and texture synthesis is beyond the
scope of this article. More detail is available elsewhere.1,2

Here I mention only the work most directly related to my
research. Recently, significant advances have occurred in
texture synthesis3-9 and the ability of several such
algorithms to perform texture transfer has been
demonstrated,2,7,8,10 including examples of artistic style
transfer. However, with the exception of image analogies,2

the primary goal of these methods is texture synthesis
rather than transfer, and they usually do not address specific
requirements mentioned in the main article text.
Combining two texture synthesis algorithms, the image
analogies method produces impressive results but requires
up to several hours of computations. Even with potential
fivefold speed increase with optimized implementation
suggested by Hertzmann et al.,2 this is not sufficient for fast
exploration of the result space. Another restriction of the
technique is that the user must provide additional unfiltered
maps restricted to having exact pointwise correspondence
with the original image.

Coherent synthesis provides interactive feedback to the
user but converges to the result too slowly, requiring many
dozens of iterations for examples similar to those presented
in this article.7 Nevertheless, this algorithm is currently the
simplest and fastest among those with demonstrated
texture transfer abilities and I use it as the basis for my
method. Even faster and simpler algorithms based on image
mosaics are available6 but texture transfer has yet to be
demonstrated using these methods. The image quilting
algorithm4 probably gives the best synthesis results overall,
but when applied to texture transfer, is slower and more
complex than coherent synthesis and requires multiple

iterations (although generally a smaller number than with
coherent synthesis). Similarly to image analogies, this
algorithm uses special correspondence maps during the
transfer process.

References
1. B. Gooch and A. Gooch, Nonphotorealistic Rendering, A.K. Peters,

2001.
2. A. Hertzmann et al., “Image Analogies,” Proc. Siggraph, ACM Press,

2001, pp. 327-340, http://mrl.nyu.edu/publications/image-
analogies/.

3. A. Efros and T.K. Leung, “Texture Synthesis by Nonparametric
Sampling,” IEEE Int’l Conf. Computer Vision, IEEE CS Press, 1999,
pp. 1033-1038.

4. L.-Y. Wei and M. Levoy, “Fast Texture Synthesis Using Tree-Struc-
tured Vector Quantization,” Proc. Siggraph, ACM Press, 2000, pp.
379-488.

5. J. Portilla and A. Simoncelli, “A Parametric Texture Model Based
on Joint Statistics of Complex Wavelet Coefficients,” Int’l J. Com-
puter Vision, vol. 40, no. 1, 2000, pp. 49-71.

6. L. Liang, et al., Real-Time Texture Synthesis by Patch-Based Sam-
pling, tech. rep. MSR-TR-2001-40, Microsoft, Mar. 2001.

7. M. Ashikhmin, “Synthesizing Natural Textures,” Proc. ACM Symp.
Interactive 3D Graphics, ACM Press, 2001, pp. 217-226.

8. A. Efros and W. Freeman, “Image Quilting for Texture Synthesis
and Transfer, Proc. Siggraph, ACM Press, 2001, pp. 341-346.

9. S. Zelinka and M. Garland, “Towards Real-Time Texture Synthe-
sis with the Jump Map,” Proc. 13th Eurographics Workshop on Ren-
dering, Eurographics Association, 2002, pp. 101-107.

10. P. Harrison, “A Non-Hierarchical Procedure for Resynthesis of
Complex Textures,” WSCG Winter School of Computer Graphics
Conf. Proc. (WSCG), Univ. of West Bohemia, 2001, pp. 190-197.

(a) (b) (c)

Depending on the probabilities of the extra candi-
dates (both random p and location-specific pl), resolu-
tion ratio m of target images, and the source texture, you
can obtain a variety of interesting styles. Figure 2 shows
several examples, each created in less than half a sec-
ond (runtime, not user time spent experimenting with
parameters) from an image with an original resolution
of 430 ×430 pixels. I did not use a special artistic source
to create any of these results.

Conclusion
My method carefully extends the search space of the

coherent synthesis in a way that doesn’t carry a great
computational penalty. The technique is compatible with
the general spirit of developing simple methods well suit-
ed to a particular problem at hand, rather than attempt-
ing to create a single technique (that is, with a fixed
image metric) suitable for most texture transfer tasks.

Recently developed simple and fast texture synthesis
and transfer techniques are being used in a number of
computer graphics applications. The texture transfer
method presented here can provide significant value for
those applications requiring greater flexibility and speed
rather than hands-off operation. It would be also inter-
esting to investigate theoretical foundations of neigh-
borhood-based texture synthesis and transfer
algorithms as well as broader applications of such meth-
ods in other areas of computer graphics. Possibly trans-
ferring them into a general modeling and rendering
technique for complex systems. ■

References
1. M. Ashikhmin, “Synthesizing Natural Textures,” Proc.

ACM Symp. Interactive 3D Graphics, ACM Press, 2001, pp.
217-226.

2. L.-Y. Wei and M. Levoy, “Fast Texture Synthesis Using Tree-
Structured Vector Quantization,” Proc. Siggraph, ACM
Press, 2000, pp. 379-488.

3. A. Hertzmann et al., “Image Analogies,” Proc. Siggraph,
ACM Press, 2001, pp. 327-340, http://mrl.nyu.edu/pub-
lications/image-analogies/.

4. A. Efros and W. Freeman, “Image Quilting for Texture Syn-
thesis and Transfer, Proc. Siggraph, ACM Press, 2001, pp.
341-346.

5. S. Zelinka and M. Garland, “Towards Real-Time Texture
Synthesis with the Jump Map,” Proc. 13th Eurographics
Workshop on Rendering, Eurographics Association, 2002,
pp. 101-107.

6. S. Brooks and N. Dodgson, “Self-Similarity Based Texture
Editing,” Proc. Siggraph, ACM Press, 2002, pp. 653-656.

Michael Ashikhmin is an assis-
tant professor at the Center for Visu-
al Computing, Computer Science
Department at Stony Brook Univer-
sity. His research interests include
realistic and nonphotorealistic com-
puter graphics, animation, and visu-

al perception. Ashikhmin received an MS in physics from
the Moscow Institute of Physics and Technology, an MS in
chemistry from the University of California, Berkeley, and
a PhD in computer science from the University of Utah.

Readers may contact Michael Ashikhmin at the Com-
puter Science Dept., Stony Brook Univ., Stony Brook, NY
11794; ash@cs.sunysb.edu.

For further information on this or any other computing
topic, please visit our Digital Library at http://comput-
er.org/publications/dlib.

IEEE Computer Graphics and Applications 7

