Read: Section 6.3

1. Let X_n be an IID random process with mean zero and variance σ_X^2. Consider the random process defined by $Y_n = X_n + X_{n-1}$, which is a stationary random process. Is Y_n "mean ergodic"? "Mean ergodicity" is a weak kind of ergodicity, meaning that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} Y_i = EX$$

You may use the fact that X_n is ergodic in the full sense.

2. A wide-sense stationary random process $\{X(t)\}$ has power spectral density

$$S_X(f) = \frac{6f^2}{1+f^4}$$

Find the average power of the random process.

3. A zero-mean, white, Gaussian random process X_t is input to a linear time-invariant system with impulse response

$$h(t) = \begin{cases}
3 \ e^{-2t}, & t \geq 0 \\
0, & t < 0
\end{cases}$$

Let Y_t denote the output.

(a) Find the power spectral density of Y_t.
(b) Find the autocorrelation function of Y_t and the variance of Y_t.
(c) Is Y_t an independent increment process? Justify your answer.
(d) Is Y_t a Markov process? Justify your answer.
(e) Find $\Pr(X_7 < 6)$.
(f) Compute the linear MMSE estimate of X_7 given $X_5=6$.
(g) Find $E(X_7-X_5)^2$