Notes on Mean Ergodicity

Definition: A wide sense stationary random discrete-time process $\left\{\mathrm{X}_{\mathrm{k}}\right\}$ is mean ergodic if

$$
\begin{equation*}
\mathrm{E}\left(\frac{1}{\mathrm{n}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{k}}-\mathrm{EX}_{1}\right)^{2} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty \tag{1}
\end{equation*}
$$

Equivalently, $\left\{\mathrm{X}_{\mathrm{k}}\right\}$ is mean ergodic if $\operatorname{var}\left(\mathrm{T}_{\mathrm{n}}\right) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$, where T_{n} is the sample average of X_{1}, \ldots, X_{n}; i.e.

$$
\mathrm{T}_{\mathrm{n}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{k}}
$$

Theorem: A wide-sense stationary random discrete-time process $\left\{\mathrm{X}_{\mathrm{k}}\right\}$ is mean ergodic if and only if its covariance function $K_{X}(k)$ satisfies

$$
\begin{equation*}
\frac{1}{\mathrm{n}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{~K}_{\mathrm{X}}(\mathrm{k}) \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty \tag{2}
\end{equation*}
$$

Corollary: Either of the following is sufficient (but not necessary) for mean ergodicity:

$$
\text { (i) } \mathrm{K}_{\mathrm{X}}(\mathrm{k}) \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty \text {, or (ii) } \quad \sum_{\mathrm{k}=1} \mathrm{~K}_{\mathrm{X}}(\mathrm{k})<\infty
$$

Note: A similar Theorem and Corollary hold in the continuous-time case.

Proof of Theorem:

We first show that $\left\{X_{k}\right\}$ is mean ergodic iff

$$
\begin{equation*}
\frac{1}{\mathrm{n}} \sum_{\mathrm{k}=1}^{\mathrm{n}}\left(1-\frac{\mathrm{k}}{\mathrm{n}}\right) \mathrm{K}_{\mathrm{X}}(\mathrm{k}) \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty ; \tag{3}
\end{equation*}
$$

i.e. $(1) \Leftrightarrow(3)$. We will subsequently complete the proof by showing $(1) \Rightarrow(2) \Rightarrow(3)$.

Proof that (1) \Leftrightarrow (3):

$$
\begin{align*}
\operatorname{var}\left(T_{n}\right) & =\operatorname{var}\left(\frac{1}{n} \sum_{k=1}^{n} X_{k}\right)=\frac{1}{n^{2}} \sum_{j=1}^{n} \sum_{k=1}^{n} \operatorname{cov}\left(X_{j} X_{k}\right) \\
& =\frac{1}{n^{2}} \sum_{j=1}^{n} \sum_{k=1}^{n} K_{X}(j-k)=\frac{1}{n^{2}} \sum_{k=1}^{n-1} 2(n-k) K_{X}(k)+\frac{1}{n^{2}} n K_{X}(0) \tag{4}
\end{align*}
$$

where this follows from the fact that both of the last two expressions can be seen to equal the sum of all elements in the matrix (it's a covariance matrix) shown below

$$
\begin{array}{lllll}
\mathrm{K}_{X}(0) & \mathrm{K}_{X}(1) & \mathrm{K}_{X}(2) & \ldots . . & \mathrm{K}_{X}(\mathrm{n}-1) \\
\mathrm{K}_{\mathrm{X}}(1) & \mathrm{K}_{\mathrm{X}}(0) & \mathrm{K}_{\mathrm{X}}(1) & \ldots . . & \mathrm{K}_{\mathrm{X}}(\mathrm{n}-1) \\
\mathrm{K}_{\mathrm{X}}(2) & \mathrm{K}_{\mathrm{X}}(1) & \mathrm{K}_{X}(0) & \ldots . . & \mathrm{K}_{X}(\mathrm{n}-1) \\
\cdot & & & & \\
\cdot & & & & \\
\cdot & & & & \\
\mathrm{K}_{\mathrm{X}}(\mathrm{n}) & \mathrm{K}_{\mathrm{X}}(\mathrm{n}-1) & \ldots . . & \mathrm{K}_{\mathrm{X}}(0)
\end{array}
$$

Since the second term in (4) goes to zero, we see that $\operatorname{var}\left(\mathrm{T}_{\mathrm{n}}\right) \rightarrow 0$ iff (3) holds. In other words, (1) $\Leftrightarrow(3)$.

Proof that (1) \Rightarrow (2):
Let us assume that (1) holds. Observe that

$$
\begin{aligned}
\operatorname{cov}\left(X_{n}, T_{n}\right) & =E\left(X_{n}-E X\right)\left(T_{n}-E X\right)=E \frac{1}{n} \sum_{k=1}^{n}\left(X_{n}-E X\right)\left(X_{k}-E X\right) \\
& =\frac{1}{n} \sum_{k=1}^{n} \operatorname{cov}\left(X_{n}, X_{k}\right)=\frac{1}{n} \sum_{k=1}^{n} K_{X}(n-k) \\
& \left.=\frac{1}{n} \sum_{k^{\prime}=0}^{n-1} K_{X}\left(k^{\prime}\right) \quad \quad \text { (letting } k^{\prime}=n-k\right) \\
& =\frac{1}{n} \sum_{k=1}^{n} K_{X}(k)+\frac{1}{n}\left(K_{X}(0)-K_{X}(n)\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\frac{1}{n} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{~K}_{X}(\mathrm{k}) & =\operatorname{cov}\left(\mathrm{X}_{\mathrm{n}}, \mathrm{~T}_{\mathrm{n}}\right)-\frac{1}{\mathrm{n}}\left(\mathrm{~K}_{X}(0)-\mathrm{K}_{X}(\mathrm{n})\right) \\
& \leq \sqrt{\operatorname{var}\left(\mathrm{X}_{\mathrm{n}}\right) \operatorname{var}\left(\mathrm{T}_{\mathrm{n}}\right)}-\frac{1}{\mathrm{n}}\left(\mathrm{~K}_{X}(0)-\mathrm{K}_{X}(\mathrm{n})\right)
\end{aligned}
$$

Now (1) implies that $\operatorname{var}\left(\mathrm{T}_{\mathrm{n}}\right) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$. Since the second term in the above also goes to zero, we have

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{~K}_{\mathrm{X}}(\mathrm{k})=0
$$

which is (2).
Proof that (2) \Rightarrow (3):
First we note that

$$
\begin{equation*}
\sum_{k=1}^{n}(n-k) K_{X}(k)=\sum_{j=1}^{n-1} \sum_{k=1}^{j} K_{X}(k) \tag{5}
\end{equation*}
$$

which follows from the fact that both sides represent the sum of all terms in the following array

(The right hand side is the sum by rows.). Let us now fix a small number $\varepsilon>0$. Assuming (2), the definition of a limit implies there exists n_{o} such that

$$
\begin{equation*}
\left|\frac{1}{n} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{~K}_{\mathrm{X}}(\mathrm{k})\right| \leq \varepsilon, \text { for all } \mathrm{n} \geq \mathrm{n}_{\mathrm{o}} \tag{6}
\end{equation*}
$$

Then for any $\mathrm{n} \geq \mathrm{n}_{\mathrm{o}}$,

$$
\begin{aligned}
& \left|\frac{1}{n} \sum_{k=1}^{n}\left(1-\frac{k}{n}\right) K_{X}(k)\right|=\left|\frac{1}{n_{2}} \sum_{k=1}^{n}(n-k) K_{X}(k)\right| \\
& \quad=\left|\frac{1}{n^{2}} \sum_{j=1}^{n-1} \sum_{k=1}^{j} K_{X}(k)\right|
\end{aligned}
$$

$$
\leq \frac{1}{\mathrm{n}^{2}} \sum_{\mathrm{j}=1}^{\mathrm{n}-1}\left|\sum_{\mathrm{k}=1}^{\mathrm{j}} \mathrm{~K}_{\mathrm{X}}(\mathrm{k})\right| \quad \quad \text { (abs. value of sum } \leq \text { sum of abs. val's) }
$$

$$
=\frac{1}{n^{2}} \sum_{j=1}^{n_{0}}\left|\sum_{k=1}^{j} K_{X}(k)\right|+\frac{1}{n^{2}} \sum_{j=n_{0}+1}^{n-1} j\left|\frac{1}{j_{k}} \sum_{k=1}^{j} K_{X}(k)\right| \quad \text { (sum divided in two) }
$$

$$
\begin{aligned}
& \leq \frac{1}{\mathrm{n}^{2}} \sum_{j=1}^{\mathrm{n}_{\mathrm{O}}} \mathrm{j} K_{X}(0)+\frac{1}{\mathrm{n}^{2}} \sum_{j=n_{0}+1}^{\mathrm{n}-1} \mathrm{j} \varepsilon \\
& \leq \frac{1}{\mathrm{n}^{2}} \mathrm{n}_{\mathrm{o}}^{2} K_{X}(0)+\varepsilon
\end{aligned}
$$

$$
\text { (using } K_{X}(k) \leq K_{X}(0) \text { and (6)) }
$$

$$
\leq 2 \varepsilon \text { when } n \text { is large }
$$

At this point we have shown that for any $\varepsilon>0$,

$$
\left|\frac{1}{\mathrm{n}} \sum_{\mathrm{k}=1}^{\mathrm{n}}\left(1-\frac{\mathrm{k}}{\mathrm{n}}\right) \mathrm{K}_{\mathrm{X}}(\mathrm{k})\right| \leq 2 \varepsilon \text { when } \mathrm{n} \text { is sufficiently large. }
$$

By the definition of a limit, this means that

$$
\frac{1}{\mathrm{n}} \sum_{\mathrm{k}=1}^{\mathrm{n}}\left(1-\frac{\mathrm{k}}{\mathrm{n}}\right) \mathrm{K}_{\mathrm{X}}(\mathrm{k}) \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty
$$

and completes the proof that $(2) \Rightarrow(3)$.

