Notes on Mean Ergodicity

Definition: A wide sense stationary random discrete-time procegsigXnean ergodidf

1 2 f
E Xk- EX1H ~ 0 as no 1
g g = @

Equivalently, {X} is mean ergodic if var(]) - 0 as n-o , where T, is the sample
average of X,...,Xn; i.e.

1 n
Tn :ﬁké:LXk

Theorem: A wide-sense stationary random discrete-time procegsi$¥nean ergodiaf and
only if its covariance function ¥(k) satisfies

n
LS Kx® - 0 as ne o )
k=1
Corollary: Either of the following is sufficient (ut not necessary) for mean ergodicity:
() Kx(k) - 0 as n» o, or (ii) klex(k) <o
Note: A similar Theorem and Corollary hold in the continuous-time case.

Proof of Theorem:
We first show that {X%} is mean ergodic iff

1a-Km - 0 o; 3
”k§1( -n) Kx(k) - 0 as n- o; (3)

i.e. (1) = (3). We will subsequently complete the proof by showing{1§2) 0 (3) .
Proof that (1) = (3):

n n
var(Tp) = var% z ng z z cov(XJXk)
1 n n n-1
1k21 x(-k) = z 2(n k) Kx(k) + 5 nKx(O) (4)

where this follows from the fact that both of the last two expressions can be seen to equal the
sum of all elements in the matrix (it's a covariance matrix) shown below

Kx(0) Kx(1) Kx(2) ..... K¢ (n-1)
Kx(1) Kx(0) Kx(1) ..... K¢ (n-1)
Kx(2) Kx(1) Kx(0) ... Ke(n-1)
Kx(n) Kx(n-1) ... K(0)

Since the second term in (4) goes to zero, we see thatpvar(@ iff (3) holds. In other
words, (1)= (3).
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Proof that (1) O (2):

Let us assume that (1) holds. Observe that

CoV(Xn,Tr) = E (EX)(THEX) = Eﬁkgl(xn-EX)(xk-EX)
1N 1 N
= ﬁkzlcov(xn,xk) =5 k;1Kx(n-k)
1 n-1
= h kz_cl)<x(k') (letting k' = n-k)
= L Sk + L kx(0)1K
= 2 Kx() + § (Kx(©@-Kx(n)
Thus
n
B XK = oV T - (Kx(OFKx(n)

IN

TVaRavar(Ty) -+ (Kx(0)-Kx(n)

Now (1) implies that var({) - 0 as n-o . Since the second term in the above also goes to
zero, we have

im L3 Kek) = 0
m — X =
nkzl

N oo

which is (2).

Proof that (2) O (3):
First we note that

n n-1 |j

(n-k) Kx(k) = Kx (k) (5)

&1 21 &1
which follows from the fact that both sides represent the sum of all terms in the following array

Kx(1) Kx(1) ........ K(1) Kx(1) (n-1 terms)
Kx(2) Kx(2) ........ K (2) (n-2) terms)
Kx(n-2) Kx(n-2) (2 terms)
Kx(n-1) (1term)

(The right hand side is the sum by rows.). Let us now fix a small numbdy. Assuming
(2), the definition of a limit implies there existg such that

n
% klex(k@S e, forall nzng. (©)
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Then for any e ng,

m N k n_pi N 0
1->) Kx(k)g= n-k) Kx (k)
h kgl( n) Kx( )D T kgl( ) Kx( )D
m 1) 0 .
= Kx (K)D (using (5) )
@ jzzl kél O
1 gl 0
<5 3 03 Kx(k)% (abs. value of surg sum of abs. val's)
1 Mo L ” 1 |
= n2 z 0 z Kx(k)D+ ) ] g z Kx(k)D (sum divided in two)
- 0
1 Mo 1 Nl .
< 2 LIKXOF G nzj (using Kx(K) < Kx(0) and (6))
1
< ? no KX(O) + €
< 2¢ whenn islarge (since the first term goes to zero)

At this point we have shown that for amy> 0,

m N k 0 . .
% k21(1 - ﬁ) Kx(k)%s 2 ¢ when n is sufficiently large.

By the definition of a limit, this means that

ln(l-K)K(k) 0 as ns »
nkél n/ "X =

and completes the proof that (2)(3) .
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