1. Consider the discrete-time binomial random process $Y_n = \sum_{i=1}^{n} X_i$, $n = 1, 2, 3, ...$ where X_n is a Bernoulli random process with $p_X(1) = q$, $p_X(0) = 1-q$. Show that the autocorrelation function is $$R_X(k,m) = kq(1+(m-1)q), \text{ when } m \geq k$$

2. Consider the discrete-time Gaussian autoregressive random process Y_n, which is defined by the property that

$$Y_n = a Y_{n-1} + X_n, \quad n = 1, 2, ...$$

where X_n is an IID Gaussian random process with mean 0 and variance σ^2_X, and where X_n is uncorrelated with Y_{n-1}, Y_{n-2}, ..., Y_0. Assume that Y_n is widesense stationary. Assume also that Y_0 is Gaussian.

(a) Find the mean function $\mu_Y(n)$. (Hint: Use the fact that the mean of Y_n and X_n do not change with n.)

(b) Find the variance of Y_n in terms of σ^2_X and a. (Hint: square and take the expected values of both sides of $Y_n = a Y_{n-1} + X_n$ and use the widesense stationarity.)

(c) Show that the autocorrelation function is $R_Y(k) = a |k| \frac{1}{1-a^2} \sigma^2_X$. ($R_X(k) = R_X(n, n+k)$ for any n)

(d) Find the joint probability density of X_1, X_3.

(e) If $a = .9$, find $Pr(X_3 > X_1 + 1)$.

3. Consider the random process $X_t = a \cos(\omega t + \Theta)$, $t \in T = (-\infty, \infty)$, where a and ω are constants, and Θ is a random variable uniformly distributed between 0 and 2π.

(a) Find the density of X_t.

(b) Find the mean function of X_t

(c) Find the autocorrelation function of X_t.

(d) Is X_t widesense stationary?

(e) Does $\frac{1}{T} \int_{-T}^{T} X_t \, dt \to EX_t$ with probability 1? If it does, then one can say it is “mean ergodic” or has “ergodicity of the mean”.

4. Consider a random process X_t described by the following functional model. The underlying experiment is (Ω_u, E_u, P_u, U) where $\Omega_u = \{1,2,3,4\}$, E_u = power set of Ω_u, $P_u(A) = |A|/4$ for any $A \in E_u$. The index set is $T = (-\infty, \infty)$. The function $X_t(\omega)$ is

$$X_t(1) = 1, \quad X_t(2) = -2, \quad X_t(3) = \sin \pi t, \quad X_t(4) = \cos \pi t.$$

(a) Sketch the sample functions of this random process.

(b) Find the mean function.

(c) Find the autocorrelation function.

(d) Is the process wide-sense stationary?

(e) Is the process stationary in the strict sense?

(f) Find $Pr(-.5 < X_.5 < 2.5, -.5 < X_1 < .5)$. (Hint: It helps to draw pictures.)

(g) Find $Pr(-.8 < X_{-.25} < .8, -.8 < X_{.25} < .8)$

(h) Find $Pr(0 \leq X_t \leq 1, 0 < t < 1/2)$

Continued on next page.
5. Suppose X_t is a wide-sense stationary random process with index set $T = (-\infty, \infty)$ mean zero and autocorrelation function $R_X(\tau)$. Consider the following random process with the same index set

$$Y_t = \int_{t-a}^{t} X_s \, ds,$$

(a) Find the mean function of Y_t.
(b) Find the autocorrelation function of Y_t.
(c) Is Y_t wide-sense stationary?

6. Let $X_t, \ t \in T = (-\infty, \infty)$, be the random process defined by

$$X_t = A \cos(\omega t) + B \sin(\omega t)$$

where ω is a constant and A and B are IID random variables with mean 0, variance σ^2, and $E[A^3] \neq 0$.

(a) Show that X_t is WSS.
(b) Show that X_t is not stationary in the strict sense. Hint: Consider $E[X_t^3]$.

7. Let X_t be a stationary, ergodic continuous-time random process and let $Y_t = (X_t)^2$.

(a) Is Y_t stationary?
(b) Is Y_t ergodic?

8. Let X_n be a Bernoulli process with $p_X(1) = q = 1 - p_X(0)$. Let $\{Y_t: -\infty < t < \infty\}$ be the continuous-time random process defined by

$$Y_t = X_n \quad \text{if} \quad n \leq t < n+1$$

(a) For $s < t$ find the joint pmf of Y_t, Y_s: $p_{Y_t,Y_s}(y_1,y_2)$
(b) Find the autocorrelation function of Y_t.
(c) Is $\{Y_t\}$ wide stationary? Stationary?
(d) Is it mean ergodic?