1. By direct integration, find the Fourier transform of the signal

\[x(t) = \begin{cases}
\cos 2\pi f_o t, & -\frac{T}{2} \leq t \leq \frac{T}{2}, \\
0, & \text{else,}
\end{cases} \]

where \(f_o > 0 \).

Simplify as much as possible.

2. A wide-sense stationary random process \(X_t \) has power spectral density

\[S_{mX}(f) = \frac{6f^2}{1+f^4} \]

Find the average power of the random process.

3. A zero-mean, white, Gaussian random process \(X_t \) with power spectral density \(S_X(f) = 4, \) for all \(f, \) is input to a linear time-invariant system with impulse response

\[h(t) = \begin{cases}
3e^{-2t}, & t \geq 0, \\
0, & t < 0
\end{cases} \]

Let \(Y_t \) denote the output.

(a) Find the power spectral density of \(Y_t. \)

(b) Find the autocorrelation function of \(Y_t \) and the variance of \(Y_t. \)

(c) Find \(\Pr(Y_T < 6). \)

(d) Compute the linear MMSE estimate of \(Y_T \) given \(Y_5 = 6. \)

(e) Find \(E(Y_T - Y_5)^2. \)

4. Let \(X_t \) and \(Y_t \) be independent wide-sense stationary random processes. ("Independent" means any finite collection of the \(X_t \)'s are independent of any finite collection of the \(Y(t)'s). \) Let

\[Z(t) = X(t)Y(t) \]

(a) Show that \(\{Z(t)\} \) is WSS.

(b) Find the power spectral density of \(Z_t \) in terms of the power spectral densities of \(X_t \) and \(Y_t. \)