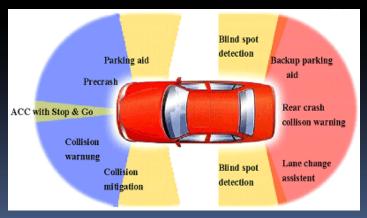
A 6.75 – 7.25 GHz Pulse Position Modulation Ultra-Wideband Receiver Front End

David DuRussel

Osama Khan

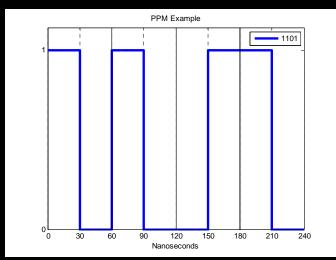
Mark Swiderski

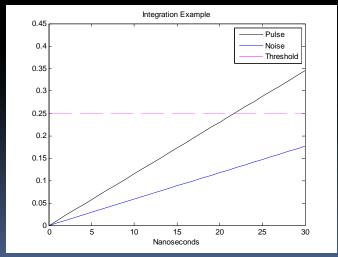

Outline

- Introduction
 - Motivation
 - Pulse Position Modulation
- System Overview
 - Design Specifications
 - Individual Stage Design
 - Conclusion
 - Results
 - Design Challenges
 - Questions

Motivation

- UWBCommunication,WPAN/WLAN
- High Speed/Short Range
- Higher end of UWB band
 - Available in most countries, not just U.S.A.





Images taken from [8] and [9]

Pulse Position Modulation

- Energy detection
 - 2 integration time windows
 - Threshold detection
- Advantages
 - Low Power
 - Low Complexity
- Disadvantages
 - Low Data Rate
 - Sensitive to channel noise

Bandwidth Reduction

- Non-Coherent Energy Detection
 - An optimal Receiver Bandwidth Exists
- Slight degradation in system performance provides:
 - Hardware benefits
 - Low power consumption
 - Better input matching
 - Reduced adjacent channel interference.

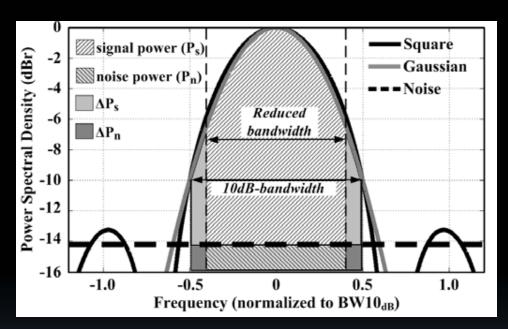
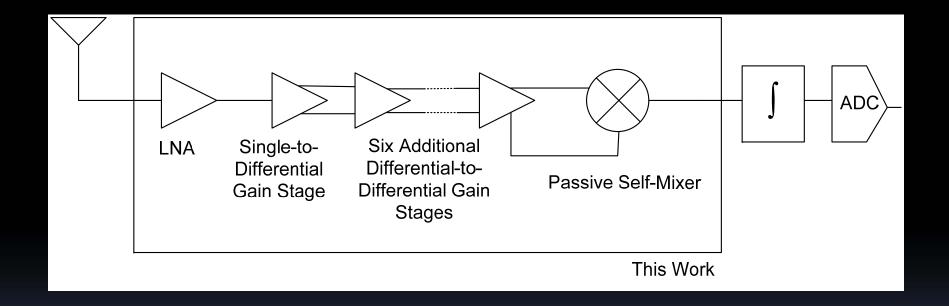
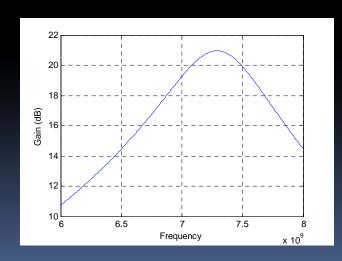
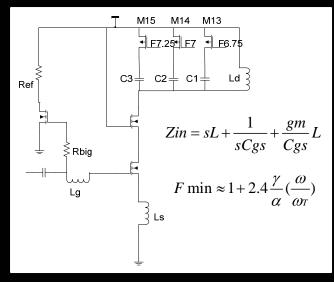
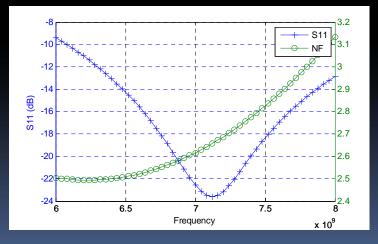



Image taken from [2]

Design Specifications

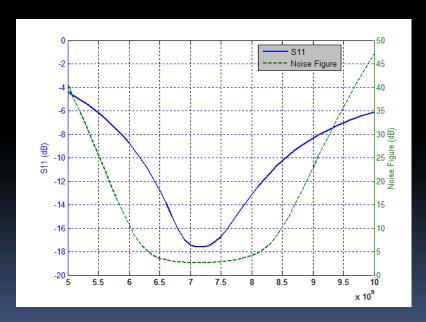

Parameter	Desired		
Process	0.13 μm CMOS		
Data Rate	16.67 Mbit/s		
Supply	1.2 V		
Channel Δf	250 MHz		
fc Subbands	6.75, 7, and 7.25 GHz		
Gain	> 40 dB		
NF	< 10 dB		
S11	< -10 dB		
Power	< 40 mW		
Distance	10 m		


System Overview

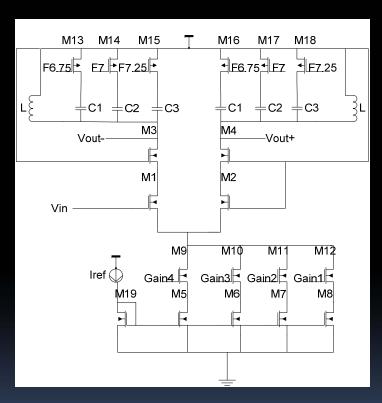


Low Noise Amplifier

- Input Referred P1dB
 - -4.4 dBm
- IIP3
 - 8.5 dBm



Low Noise Amplifier

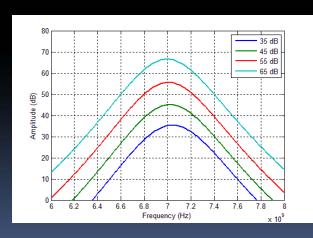

- Overall NF < 2.6 dB
- Overall Return Loss
 - > 15 dB

Noise Figure and S11

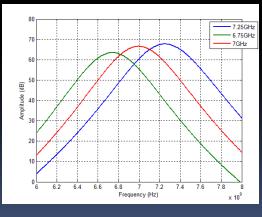
Controllable Gain Stages


- Design Strategy
 - Simple diff amp with LC tank load
 - Used gm/W vs. I/W plots to optimize between power, gain, and noise figure
 - Added cascode to increase isolation between stages
 - Single-to-differential conversion done in 1st stage

First gain stage with switchable gain and f₀

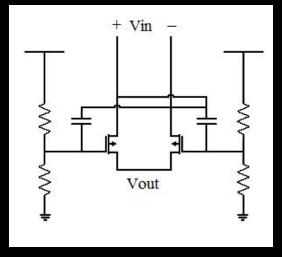

Controllable Gain Stages

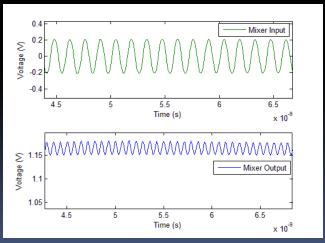
- Switchable load on all stages
 - Need for high overall Q
 - Optimize switch sizing



Overall Gains

- Switchable gain on first stage only
 - Switching affects f₀
 - First stage relatively wideband


Proper Functionality of Gain Control



Proper Functionality of Channel Selection

Self-Mixer

- Voltage Controlled Resistance.
- Biased near Vth
 - Achieves best swing of resistance
- Passive
 - Very Low Power
 - High NF and Conversion Loss
- Differential to Single-Ended Output

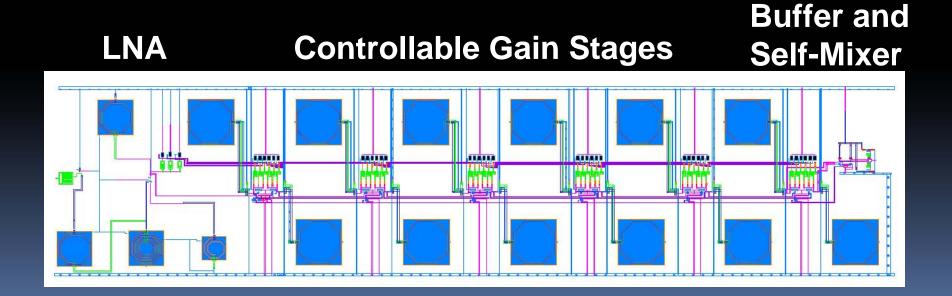
Self-Mixer Input and Output

Results

 We can now find the approximate range for Non-coherent PPM with BER of 10⁻³ [1]

$$\frac{E_b}{N_0} = 17dB$$

$$SNR_{out} = \frac{E_b}{N_0} - 10\log(BW) + 10\log(R) \approx 4.45dB$$



Results

Parameter	This Work	Desired	Li, Xia, Huang	Fred Lee Thesis
Process	0.13 μm CMOS	0.13 μm CMOS	0.13 μm CMOS	90nm CMOS
Data Rate	16.67 Mbit/s	16.67 Mbit/s	-	16.67 Mbit/s
Supply	1.2 V	1.2 V	1.2 V	0.65 V
Die Size	0.869 mm x 3.83 mm	-	1.1 mm x 1.5 mm	1mm x 2.2mm
Channel Δf	300 MHz	250 MHz	> 250 MHz	500 MHz
fc Subbands	6.75, 7, and 7.25 GHz	6.75, 7, and 7.25 GHz	3.4, 3.9, and 4.4 GHz	3.4, 3.9, and 4.4 GHz
Gain	40 dB	> 40 dB	22 dB	40 dB
NF	2.6 dB	< 10 dB	3.3 - 4 dB	8.6 dB
S11	< -15dB	< -10 dB	< -10 dB	-
Power	34.4 mW	< 40 mW	21.6 mW	-
Distance	6m	10 m	-	7m

Layout

- 0.869 mm x 3.83 mm
- Inductors spaced 1 diameter apart to reduce coupling

Design Challenges

- Upper Band Channel Selection
 - High Q, Narrow Bandwidth
- Center Frequency Tuning
- Channel and Gain Switches
- Mixer Characterization
- Die Size

Conclusions

- Specifications reasonably met or exceeded
 - Very low noise figure
 - Good input matching, gain, and BW
- Large die size
- Future Work
 - Differential Inductors
 - Higher order filters
 - Fewer Gain Stages

Questions

References

- 1. F. S. Lee, "Energy Efficient Ultra-Wideband Radio Transceiver Architectures and Receiver Circuits" PhD Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 2007.
- 2. J. M. Almodovar-Faria and D. D. Wentzloff, "Optimal Filter Bandwidth for Non-Coherent UWB Receivers," Unpublished.
- 3. G. Palmisano and S. Pennisi, "CMOS single-input differential-output amplifier cells," *Circuits, Devices and Systems, IEE Proceedings*, 6 June 2003, pp. 194-198.
- 4. K. Han, L. Zou, Y. Liao, H. Min and Z. Tang, "A Wideband CMOS Variable Gain Low Noise Amplifier Based on Single-to-Differential Stage for TV Tuner Applications," *Solid-State Circuits Conference*, 2008. A-SSCC '08. IEEE Asian, 3-5 Nov. 2008, pp. 457-460.
- 5. T. H. Lee, *The Design of CMOS Radio-Frequency Integrated Circuits*, 2nd ed., Cambridge University Press, 2003.
- 6. Raúl Blázquez, "Ultra-wideband Digital Baseband", PhD Dissertation, Massachusetts Institute of Technology, 2006.
- 7. W. Li, L. Xia, Y. Huang and Z. Hong, "A 0.13um CMOS UWB Receiver Front-End Using Passive Mixer," *Circuits and Systems*, 2008. APCCAS 2008. IEEE Asia Pacific Conference, pp. 288-291.
- 8. http://www.sara-group.org/operating_principle
- 9. http://www.engadget.com/tag/Ult<u>raWideband/</u>