### An Energy Efficient 1 Gb/s, 6-to-10 GHz CMOS IR-UWB Transmitter and Receiver With Embedded On-Chip Antenna

#### Zeshan Ahmad, Khaled Al-Ashmouny, Kuo-Ken Huang

EECS 522 Analog Integrated Circuits

(Winter'09)



# OUTLINES

#### INTRODUCTION

- What and Why UWB?
- Comparison with other Schemes
- How can UWB open new application opportunities?

#### Overall System Architecture

#### Ultra-wideband Transmitter

- Data Modulation and Pulse Generation
- Fully-Integrated On-Chip Antenna
- Power Amplifier and FCC Mask Compliance

#### Ultra-wideband Receiver

- On-Chip Active Bandpass Filter
- Low-Power, Low-Noise Amplifier

#### Results and Comparison with Previous Work

Conclusions and Future Directions

### Introduction

#### What is Impulse-Radio Ultra-Wideband (IR-UWB)?

- Short-range, High-Bandwidth Communication
- Bandwidth (BW): ٠
  - 3.1 10.6 GHz <-41.3 dBm/MHz Power Spectral Density Emission:
- Emitted Signal BW (-10dB): ٠







#### Why UWB?

•

- Low-Power, Low-cost (min RF electronics)
- Small Interference to other Narrow-band Systems (e.g WLAN, Wi-Fi) .



### Introduction

#### **Comparison with Others**

• Example: for Bio-Implantable Devices

| Group        | Design         | Frequency | Bandwidth | Data<br>Rate  | Energy/bit | Process | Size mm <sup>2</sup> |
|--------------|----------------|-----------|-----------|---------------|------------|---------|----------------------|
| Harrison' 04 | FM             | 433 MHz   | 22 MHz    | Test<br>300Hz | 21.2 nJ/b  | 0.5 μm  | 1.29 mm <sup>2</sup> |
| Najafi'05    | FM             | 96.5 MHz  | 4 MHz     | 3-CH          | N/A        | 1.5 μm  | 0.21 mm <sup>2</sup> |
| Chae'08      | OOK-PPM<br>UWB | 4.2 GHz   | 1 GHz     | 90 MHz        | 17 pJ/b    | 0.35 μm | N/A                  |
| Kuroda'09    | BPSK UWB       | 6-10 GHz  | 4 GHz     | 750 MHz       | 41 pJ/b    | 0.18 μm | 0.29 mm <sup>2</sup> |

#### New Applications?

- Low-power for more number of channels
- Less interference to other microsystem components
- Small, simple circuit for the transmission (*less area requirements*)
- Bio-Implants, Wireless Sensor Nodes, and Integrated Microsystems



# **Overall System Architecture**



### **Overall System Architecture**





### **IR-UWB Transmitter**



# **Design Choices**

- Frequency Band: 6-10GHz
- Why 6-10GHz?
  - Relatively Low Interference (WLAN Operates around 2.4/5.5GHz)
  - Relatively Narrow Bandwidth w.r.t. center frequency
- Modulation Scheme: BPSK
- Why BPSK?
  - No Discrete Spectra
  - 3-dB Higher Modulation Efficiency compared to PPM, PAM/OOK
- Pulse Generation and Shaping: Digital
- Why Digital?
  - Take Advantage of Technology Scaling
  - Any Downside?



### **Pulse Generation/Shaping**





### **On-Chip Tapered Monopole Antenna**

- Integration for short range communication
- Monopole topology
- Taper for broad bandwidth
- Matched to power amplifier

|                |                     |                      | An        |
|----------------|---------------------|----------------------|-----------|
|                | [1]                 | This Work            |           |
| f <sub>c</sub> | 9.0 GHz             | 7.7 GHz              | out d th  |
| Area           | 4.4 mm <sup>2</sup> | 0.30 mm <sup>2</sup> | Green 1 h |
| Directivity    | 5 dBi               | - 10 dBi             | the Quant |
| Efficiency     | 0.6 %<br>(-22 dB)   | 4.23 %<br>(-13 dB)   | liaidh    |
| Bandwidth      | 2.2 GHz             | 4.0 GHz              |           |
|                |                     |                      |           |





300 µm

4 mm



### **UWB Power Amplifier**

Transformer feedback to increase bandwidth

$$Zin = \frac{gmLs}{Cgs} + j \left[ \omega(Lg + Ls) - \frac{1}{\omega Cgs} \right]$$
$$Zin_{FB} = \frac{gm(Ls - M)}{Cgs} + j \left[ \omega(Lg + 2Ls - 2M) - \frac{1}{\omega Cgs} \right]$$

 No additional output matching network for efficiency
2.0010.











### **IR-UWB Receiver**



### **On-Chip Active Bandpass Filter**

- On-chip solution for pre-select bandpass filter
- 3<sup>rd</sup> order shunt-type resonance capacitive coupled bandpass filter
- Efficient loss compensation for Qfactor boosting





### **Low-Power Low-Noise Amplifier**

#### **Schematic**





### **Low-Power Low-Noise Amplifier**

#### **Schematic**



### Results and Performance Comparison with previous work



#### **Simulation Result - UWB Power Amplifier**

Group Delay of S21 – GD21 sec - S21 dB20 - S11 dB20 - S12 dB20 95.0-20.0 90.0-10.0-85.0-0-280.0 ଞ୍ଚି-10.0-ଅଞ୍ଚ ⊱-20.0-⊎ 9,75.0--30.0-70.0--40.0-65.0--50.0-60.0-6.0 7.0 8.0 9.0 10.0 11.0 5.0 7.0 5.0 6.0 8.0 9.0 10.0 11.0 freq (GHz) X0 (E9)

| Reference | CMOS Tech. | Bandwidth      | Avg. Gain | Avg. OP <sub>1dB</sub> | Group Delay<br>Variation | Power<br>Consumption | Avg. PAE |
|-----------|------------|----------------|-----------|------------------------|--------------------------|----------------------|----------|
| [1]       | 0.18 μm    | 8 - 10 GHz     | 13.2 dB   | N/A                    | N/A                      | 20.0 mW              | N/A      |
| [8]       | 0.18 μm    | 3.1 – 4.8 GHz  | 19.0 dB   | -4.2 dBm               | N/A                      | 25.0 mW              | 1.5 %    |
| [9]       | 0.18 μm    | 6 - 10 GHz     | 8.5 dB    | 5.0 dBm                | N/A                      | 18.0 mW              | 14.4 %   |
| This Work | 0.13 μm    | 5.1 – 10.5 GHz | 10.1 dB   | 0.1 dBm                | 18.6 % from 90 ps        | 4.2 mW               | 21.6 %   |

17



### **Simulation Result - UWB Transmitter**



Transmitted Signal (w/o PA)







#### Simulation Result - Active Bandpass Filter



| Bandwidth | Insertion Loss | Return loss | Noise Figure   | Out-of-Band<br>Attenuation      | Power<br>Consumption |
|-----------|----------------|-------------|----------------|---------------------------------|----------------------|
| 3.9 GHz   | 2.9 dB         | -11.2 dB    | 6.2 dB @ 7 GHz | 30 dB @ 3 GHz<br>28 dB @ 13 GHz | 0.4 mW               |



#### **Simulation Result – LNA and Filter**



#### S-parameters and NF of LNA only

#### S-parameters and NF of LNA + Filter



| Reference | Technology | BW<br>[GHz] | NF<br>[dB] | S <sub>21</sub><br>[dB] | S <sub>11</sub><br>[dB] | llP3<br>[dBm] | Supply<br>[V] | Power<br>[mW] | Area<br>[mm <sup>2</sup> ] |
|-----------|------------|-------------|------------|-------------------------|-------------------------|---------------|---------------|---------------|----------------------------|
| [10]      | 130 nm     | 3-5         | 3.5 - 5.5  | 6.4 - 9.5               | < -10.0                 | - 0.8         | 1.2           | 16.5          | ~ 1.08                     |
| [11]      | 90 nm      | 0.5-5       | 2.3-2.6    | 21-22*                  | < -10.0                 | - 8.8         | 1.8           | 12.0          | 0.012                      |
| [12]      | 180 nm     | 6-10        | 4.8        | 11.6                    | <-9                     | 1.2           | 1.8           | 11.6          | 0.81                       |
| This Work | 130 nm     | 6.3-9.4     | 3.3-3.7    | 7-10                    | <-13                    | -6.8          | 1             | 2.56          | 0.51                       |

#### **University of Michigan**

\*Voltage Gain

#### Layout View of UWB Transmitter and Receiver



#### **Results and Comparison with previous work**

| Parameter                   | [1]      | [2]                 | [3]       | [4]      | This Work      |
|-----------------------------|----------|---------------------|-----------|----------|----------------|
| Supply Voltage [V]          | 1.8-2.2  | 1                   | 1.8       | 1        | 1.2 (Tx)/1(Rx) |
| Process<br>Technology       | 180 nm   | 90 nm               | 180 nm    | 180 nm   | 130 nm         |
| BW [GHz]                    | 6 - 10   | 3.2 - 5             | 3.3 - 4.8 | 3.1 - 10 | 6 -10          |
| Data Rate                   | 750 Mb/s | 10 Mb/s             | 1 Gb/s    | 1.8 Gb/s | 1Gb/s          |
| Modulation                  | BPSK     | Delay-based<br>BPSK | BPSK      | BPSK     | BPSK           |
| Radiated Power<br>[dBm/MHz] | -62.49   | -42                 | -42       | -42      | -55            |
| FOM [pJ/b]                  | 41       | 47                  | 108       | 126      | 7              |



## Conclusions and Future Directions

# Tailoring Designs up to what the application needs



### Conclusion

- Low-power implementation of IR-UWB transmitter for short range (7 pJ/bit)
- Broadband power amplifier and on-chip antenna
- Transmitter can be a part of fully-integrated wireless microsystems
- Low-power, low-noise analog front-end for IR-UWB receiver
- On-chip active bandpass filter reducing the Impact of out band interferers
- The performances of all implemented blocks is comparable and outperforms state-of-the-art publications
- Future work should include implementing the remaining blocks (inc PLL) as well as testing the real chip performance



### References

- 1. V.V. Kulkarni, M. Muqsith, K. Niitsu, H. Ishikuro, and T. Kuroda, "A 750Mb/s, 12pJ/b, 6-10GHz IR-UWB Transmitter with Embedded On-Chip Antenna," IEEE JSSC, vol. 44, no. 2, pp, 394-403, February 2009.
- 2. D. D. Wentzloff et al., "A 47 pJ/pulse 3.1-to-5GHz all-digital UWB transmitter in 90nm CMOS," IEEE ISSSC Dig. Tech. Papers, pp. 118-119, February 2007.
- 3. A. Medi, W. Namgoong, "A high data-rate Energy-Efficient Interference-Tolerant Fully Integrated CMOS Frequency Channelized UWB Transceiver for Impulse Radio," IEEE JSSC, vol. 43, no. 4, pp, 974-980, April 2008.
- 4. M. Demirkan et al., "A 1.8 Gpulses/s UWB transmitter in 90nm CMOS," IEEE ISSSC Dig. Tech. Papers, pp. 114-115, February 2008.
- 5. M. L. Welborn, "System Considerations for Ultra-Wideband Wireless Networks," IEEE Radio and Wireless Conference, August 2001.
- 6. H. Kim, D. Park and Y. Joo, "All-digital low-power CMOS pulse generator for UWB system," IEE Electronic Letters, vol. 40, no. 24, November 2004.
- 7. J. Ryckaert, G. Van der Plas, V. De Heyn, C. Desset, B. Van Poucke, J. Craninckx, "A 0.65-to-1.4 nJ/Burst 3-to-10 GHz UWB All-Digital TX in 90 nm CMOS for IEEE 802.15.4a," IEEE JSSC, vol. 42, no. 12, pp. 2860-2869, December 2007.
- 8. S. Jose, H-Jin Lee and D. Ha, S. S. Choi, "A low power CMOS Power Amplifier for Ultra wideband (UWB) Applications," IEEE Symp. on Circ. and Sys., vol. 5, pp.5111-5114, May 2005.
- 9. H. –W. Chung, C.-Y. Hsu, C.-Y Yang, K.-F. Wei, and H.–R. Chuang, "A 6-10GHz CMOS Power Amplifier with an Interstage Wideband Impedance Transformer For UWB Transmitters," 38th EuMC, October 2008.
- 10. A. Bevilacqua, et al., "A Fully Integrated Differential CMOS LNA for 3–5-GHz Ultrawideband Wireless Receivers," IEEE Microwave and Wireless Components Letters, vol. 16, no. 3, pp. 134-136, March 2006.
- B. G. Perumana, J.-H. C. Zhan, S. S. Taylor, and J. Laskar, "A 12 mW, 7.5 GHz bandwidth, inductor-less CMOS LNA for low-power, lowcost, multi-standard receivers," in Proc. IEEE Radio Frequency Integrated Circuits Symp., Honolulu, HI, Jun. 2007, pp. 57–60.
- 12. Y.-C. Chen and C.-N. Kuo, "A 6-10-GHz Ultra-Wideband Tunable LNA," in Proc. IEEE Intl. Symp. Cir. and Sys., May 2005, pp. 5099– 5102.



# Thank you Questions?



### **Overall System Architecture**

