A Software Defined Radio Receiver for the AM Frequency Band

Dimitrov, Jung, Prince

Software Defined Radio Receiver

SDR Receiver	Typical Receiver
Multiple wireless protocols	One wireless protocol
Multiple channels	Single channel
All demodulation performed in DSP	Mix down to IF and Baseband
Tunable Band-pass filter	Tunable Local Oscillator
Digitally programmable gain amplifier	Analog automatic gain control

 Note: For the scope of this project, the receiver is limited to the AM frequency band.

Common Gate Low Noise Amplifier

- $1/g_m \approx R_{antenna} (300 \Omega)$
- $A_v \approx g_m R_{load}$ $\approx 3.33 \text{ mS} \times 3 \text{ k}\Omega$ $\approx 20 \text{ dB}$
- N-well resistor for a balance of high process tolerance and low noise figure
- 333 mV gate bias with 1 $k\Omega$ impedance

CGLNA Results

OTA-C Band-Pass Filter

- 2nd order tunable filter allows variation in
 - Gain
 - Band width, Q
 - Center Frequency

$$A = \frac{Vo}{Vi} = \frac{(gm0*C1*s)}{C1*C2*s^2 + C1*gm3*s + gm0^2} = \frac{\frac{gm0*s}{C2}}{s^2 + \frac{gm3}{C2}*s + \frac{gm0^2}{C1*C2}}$$

$$\omega_0 = \frac{gm0}{\sqrt{C1*C2}}$$

$$Q = \frac{gm0}{gm3} * \sqrt{\frac{C2}{C1}} \qquad BW = \frac{\omega 0}{Q} = \frac{\frac{gm0}{\sqrt{C1*C2}}}{\frac{gm0}{gm3}*\sqrt{\frac{C2}{C1}}} = \frac{gm3}{C2}$$

OTA

- Fully Differential, Fully Balanced
 - Cancels common mode signals, noise, supply variations
 - Eliminates even order distortion
- OTA outputs DC bias following Gm stages
- Low bias current and PMOS transistor input to reduce 1/f noise

Bandpass Filter Performance

- Power -150μW
- Tunable -500kHz to 1.7MHz
- Variable bandwidth 50kHz 200kHz

Programmable Gain Amplifier

- Stage 1: Source
 Follower Buffer
- Stage 2: Resistive feedback amplifier
 - Stage 2a: CommonGate amplifier
 - Stage 2b: CommonSource amplifier

Programmable Gain Amplifier

$$i_{in} = \frac{v_{in}}{2R_{in}} + \frac{v_{out}}{2R_{f}}$$

$$\frac{v_{out}}{2A} = \frac{v_{in}}{2R_{in}} + \frac{v_{out}}{2R_{f}}$$

$$v_{out} \left(\frac{1}{2A} + \frac{1}{2R_{f}}\right) = v_{in} \left(\frac{1}{2R_{in}}\right)$$

$$\frac{v_{out}}{2R_{in}} = \frac{1}{2R_{in}}$$

$$\frac{v_{out}}{v_{tn}} \approx -\frac{R_f}{R_{tn}}$$

when $A \gg R_f$

Gain Linearity

- Linear Gain improves DSP control accuracy
- Linearity degrades at lower gain

Resistor Array

- Digitally controllable
- Large FETs
- Linear resistors equal in size

Overall Gain

System performance at max and min frequencies

Overall Noise Figure

Flicker noise dominates at AM frequencies

SDR System Level Results

Specifications			
Specification	1750 kHz Simulation	500 kHz Simulation	Target
Peak Gain (dB)	66.04	69.72	40
3 dB Bandwidth (kHz)	120	166	100
Settling Time (ns)	12	9	20
Noise Figure at Peak Gain (dB)	6.197	13.64	7
Highest Noise Figure (dB)	13.92	13.64	7
Output Voltage Swing (mV)	6	6	3
Power Consumption (mW)	2.94	2.90	4

$1400 \mu m$

Questions?