University of Michigan EECS 522: Analog Integrated Circuits Winter 2009 ## Problem Set 1 ## Issued 1/21/2008 - Due 1/28/2008 **Problem 1.1:** For each of the following circuits, find simplified expressions for gain $(A_v = v_{out} / v_{in})$ and R_{out} . Solving by inspection is preferred. It is ok to keep parallel combinations of resistors in the form $(R_1 | | R_2)$. For simplicity, assume that g_m , r_o , and r_π are identical for all devices, ignore body effect, and ignore r_o when appropriate $(1/g_m, R_C \text{ and } R_E \ll r_o)$. **Problem 1.2:** Use the circuit on the right for this problem. Include base width modulation in your calculations. Assume β_F = 120, V_A = 35V, $V_{CE(sat)}$ = 0.3V, and V_{BE} = 0.7V when Q_1 is in the forward active region. - a) Find the DC values of I_B, I_C, and V_{out} at the quiescent point. Assume V_{IN} = 2.7V, R_B =100k Ω , V_{CC} = 5V, and R_C = 1k Ω . What region is Q₁ operating in? - b) Find the values of g_m , R_π , and r_o at the quiescent point found in part a) and room temperature. - c) Derive a small signal expression for v_{out}/v_{in} , you do not need to solve for the numerical value. **Problem 1.3:** Use the circuit on the right for this problem. Assuming the transistor is biased in the forward active region, calculate the numerical value for small signal gain given $V_A = 35V$. Assume room temperature. This is what is referred to as the "intrinsic gain" of the device. **Problem 1.4:** Use the circuit on the right for this problem. Assume the circuit is symmetric. - a) Draw the small signal half-circuit of the diff pair. Include channel length modulation and body effect in your model. - b) Find an expression for gain v_{out}/v_{in} . **Problem 1.5:** For this problem, use the parameter values given in the table below. Use the charge control model to solve the following parts. | Parameter | NPN | Units | |-------------------|-----|-------| | $eta_{ extsf{F}}$ | 100 | A/A | | β_{R} | 10 | A/A | | $ au_{F}$ | 10 | ps | | $ au_{R}$ | 5 | ns | | $V_{CE(sat)}$ | 0 | V | - a) For the circuit on the right, assume i_B is initially 0, and steps from 0 to $10\mu A$ at time 0s and remains at $10\mu A$. V_{CC} = 5V and R_L = $2k\Omega$. What region will the transistor be in at t = ∞ ? Calculate the final values of q_F (in Coulombs), i_C , and v_{OUT} . - b) Sketch the transient current i_C from part a) as a function of time. What is the time constant of the response? **Problem 1.6:** For this problem, use the parameter values given in the table below. Use the charge control model to solve the following parts. | Parameter | NPN | Units | |-------------------|-----|-------| | $eta_{ extsf{F}}$ | 100 | A/A | | β_{R} | 10 | A/A | | $ au_{F}$ | 10 | ps | | $ au_{R}$ | 5 | ns | | $V_{CE(sat)}$ | 0 | V | a) Now assume i_B is initially 0, and steps from 0 to $100\mu A$ at time 0s and remains at $100\mu A$. V_{CC} = 5V and R_L = $2k\Omega$. Verify that the BJT will be in saturation at t = ∞ . Using the charge control models in the saturation region, calculate the final values of q_{TOTAL} = q_F + q_R , i_C , and V_{OUT} . Hint: I_C is determined by the circuit, and at time $t = \infty$ (steady state), all dq/dt terms equal 0. - b) At time t = 0 the base charge is 0 and the device is in the forward active region. Let's assume for now that the device will remain in forward active and not saturate. Calculate the final value of i_C and V_{out} using the *forward active* charge control models (V_{out} will be negative). Sketch V_{out} as a function of time, and indicate what the time constant of the response is. Calculate the time at which V_{out} reaches the saturation voltage OV. - c) The base charge just prior to the onset of saturation is defined as q_{B0} . In part b), you calculated the time at which the BJT transitions from forward active to saturation. Calculate q_{B0} using the forward active region charge control model. Calculate i_{B0} , which is the value of base current that biases the BJT right at the edge of saturation. Hint: I_C is determined by the circuit, and $q_{B0} = q_F$ when $V_{CE} = V_{CE(sat)}$. - d) You now have enough information to calculate the value of q_s , the excess charge stored in the base at time $t = \infty$, assuming now that the BJT goes into saturation. - e) Now assume the base current is switched back to 0 after q_S has been stored in the base. With $i_B = 0$, the differential equation for q_S becomes: $-i_{B0} = q_S/\tau_S + q_S/dt$. The final value of q_S from this equation is $-i_{B0}\tau_S$. In reality, a negative q_S is not allowed, and instead the device will enter the forward active region when $q_S = 0$. However, we use this final value to find the time when $q_S = 0$. Sketch the solution to the above differential equation with an initial value of q_S found in d), and the final value of $-i_{B0}\tau_S$. Calculate the value of τ_S . Now calculate the time at which $q_S = 0$. This is the time required to bring the BJT out of saturation, after which it will enter the forward active region and v_{out} begins to rise.