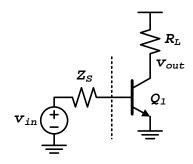

University of Michigan EECS 522: Analog Integrated Circuits Winter 2009

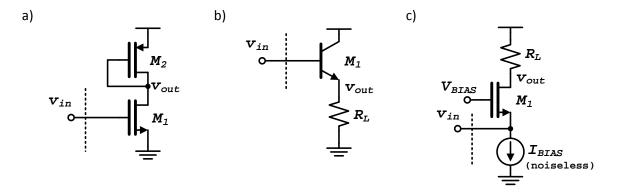
Problem Set 3

Issued 2/4/2009 - Due 2/18/2009


Problem 3.1: Use the circuit to the right for this problem. Ignore channel length modulation (λ = 0). All devices are in saturation. Consider only drain thermal noise in the FETs (no thermal noise in R_L). Find an expression for the input referred noise voltage neglecting induced gate noise. How does M₂ affect the noise contributed by the circuit? Hint: the following circuit transformation may be useful.

Problem 3.2: Use the circuit to the right for this problem. Assume the BJT is in the forward active region, ignore r_o and r_b . Consider only shot noise in the collector and base (no thermal noise in R_L). Assume β is constant with frequency.

a) Derive expressions for the input-referred short-circuit noise voltage and open-circuit noise current (not including Z_s).



- b) Derive an expression for the correlation admittance Y_c.
- c) Derive expressions for the 4 noise parameters Gc, Bc, Rn, and Gu.
- d) Find the source impedance resulting in minimum noise factor and evaluate is assuming $I_{C1} = 1mA$ and $\beta_F = 100$.

Problem 3.3: Suppose you have a choice between two amplifiers, both having $10nV/\sqrt{Hz}$ input noise voltage density; however, amplifier A has $50fA/\sqrt{Hz}$ input noise current density and amplifier B has $100fA/\sqrt{Hz}$.

- a) What is the optimum source resistance (resulting in lowest noise factor) for each amplifier? Assume the input noise sources are uncorrelated.
- b) If the source resistance is $100k\Omega$, which amplifier should you use for lowest noise?
- c) For your choice in part b), what is the noise factor?

Problem 3.4: Find expressions for the mean-square input referred short-circuit noise voltage and open-circuit noise current for the following circuits. You may neglect r_o and g_{mb} , and r_b . Include only drain noise in FET's, thermal noise in R's, and base and collector shot noise in BJT's.

