
![Circuit Diagrams](Image)

Problem 4.2: For this problem, assume an amplifier with harmonic distortion terms up to 3rd order, and all higher order terms may be neglected: $v_{out} = \alpha_1 v_{in} + \alpha_2 v_{in}^2 + \alpha_3 v_{in}^3$. The gain of the amplifier is 10dB, and HD_3 is -40dB, measured at an input level of -15dBm in a 50Ω environment.

a) Estimate IM_3 of the amplifier at an input power level of -15dBm.

b) Assuming the input power was measured in a 50Ω environment; find the values of α_1 and α_3 for the amplifier.

c) Sketch a generic plot of the 3rd-order intercept point. Calculate the values of IIP3 and OIP3.
Problem 4.3: For this problem, assume an amplifier with harmonic distortion terms up to 3rd order, and all higher order terms may be neglected: \(v_{out} = \alpha_1 v_{in} + \alpha_2 v_{in}^2 + \alpha_3 v_{in}^3 \). The gain of the amplifier is 10dB, and HD2 is -20dB, measured at an input level of -20dBm in a 50\(\Omega \) environment.

a) Calculate the DC offset in Volts at the output due to the 2nd-order harmonic distortion in the amplifier at an input level of -20dBm.

b) What input level in dBm is required to reduce the DC offset at the output to 1mV.

Problem 4.4: You are given that an amplifier has a measured HD2, HD3, and HD4 of -30dB, -40dB, and -50dB, respectively. Assuming there are no other significant harmonics, calculate the THD in percent.

Problem 4.5: Use the circuit on the right for this problem. Consider only thermal noise in \(R_s \), drain thermal noise in the FET, and correlated gate noise in the FET. You may neglect body effect and channel length modulation. Include \(C_{GS} \), but ignore all other caps.

a) Find expressions for the input referred short-circuit noise voltage and open-circuit noise current of the amplifier (not including \(Y_S \)).

b) Find expressions for \(B_{S, opt} \) and \(G_{S, opt} \) \((Y_S = G_{S, opt} + B_{S, opt}) \) that results in minimum noise factor. Your answer should be in terms of the intrinsic noise sources, and should be simplified. You may assume correlation coefficient \(c \) is imaginary and negative as we did in lecture.

c) Find an expression for the noise factor when \(Y_S = 1/50\Omega \). Your answer should be in terms of the intrinsic noise sources, and should be simplified.