University of Michigan EECS 522: Analog Integrated Circuits Winter 2008

Problem Set 6

Issued 3/25/2008 - 4/1/Due 2008

Problem 6.1: Use the common-gate amplifier below for this problem. Use the combined model for drain and gate noise, $\overline{\iota_{ndg}^2}$, derived in lecture, making the same assumptions on the small-signal model (no r_o , include C_{gs} , etc.). Assume C_{BIG} is a short at AC, and the circuit is operated at the self-resonant frequency $\omega_0 = 1/\sqrt{L_S(C_S + C_{gs})}$.

- a) What is the small-signal transconductance $G_m=i_{out}/v_{in}$ of the circuit at $\omega=\omega_0$ assuming the transistor is biased so that $1/g_m=R_S$.
- b) Derive expressions for η and $\underline{Z_{gsw}}$ for the combined drain and gate noise, $\overline{\iota_{ndg}^2}.$

- Derive an expression for the noise factor of the amplifier using your results from b).
- d) Assuming c is negative and imaginary, $\omega = \omega_0 = 1/\sqrt{L_S(C_S + C_{gs})}$, $Q_{in} = \frac{1}{2}R_S(C_S + C_{gs})\omega_0$, and $\omega_t = g_m/C_{gs}$, simplify your expression from c) into a form containing these quantities and device constants.

Problem 6.2: Use the amplifier below for this problem. Consider only C_{gs} and g_m for the FET, neglect all other small signal parameters. Assume the input and output resonances are tuned to 1GHz, and that C_{BIG} is a short circuit at 10GHz.

- a) Assume that Q=10 for all inductors at 1GHz, and the inductors are modeled as a series R and L. Given that $\omega_t=2\pi 10 GHz$ and $g_m=5mMho$, calculate the values of L_G and L_S to provide a 50Ω match to the source.
- b) Assuming $V_{GS}-V_{th}=150mV$, calculate the bias current in the FET and the voltage drop across L_s.

c) Assume this amplifier is loaded by an identical FET, therefore $C_L = C_{gs}$. Calculate the value of L_D required to resonate out this capacitance at 1GHz. Is this a reasonable value?

- d) What is the overall voltage gain of your amplifier at 1GHz? Provide a numerical value (still neglecting r_0 of the FET) with Q=10 for all inductors at 1GHz.
- e) What is the noise factor of your amplifier. Assume $\gamma = 3$, $\delta = 6$, $\alpha = 0.75$, and c = -0.55j.

Problem 6.3: Derive expressions for the input impedance Z_{in} , voltage gain v_{out}/v_{in} , and noise factor of the following circuit seen in lecture. Consider only drain thermal noise and thermal noise in the resistors.

Problem 6.4: Use the cascode LNA shown below.

- a) Derive an expression for the output-referred short-circuit noise current contributed from the drain thermal noise of transistor M2 neglecting r_o for both devices.
- b) Now including r_{o1} , what is the impedance seen looking into the drain of M1 at the resonant frequency of the input matching circuit? Assume infinite Q in the inductors, and C_{BIG} is a short.

Problem 6.5: This question concerns the measurement of noise figure of an arbitrary device under test (DUT).

- a) Assume that the temperature of the 50Ω source resistor can be precisely controlled. The noisy DUT has voltage gain A(s) and contributes a mean-square output referred noise voltage N_{DUT} in a given bandwidth Δf . Sketch a graph of the total mean square noise voltage measured at the output as a function of source resistor temperature. What is the slope of the line in V²/T?
- b) What is the significance of the intercept of this graph at T=0 K?
- c) Propose a technique to measure the noise figure of the DUT by only varying the temperature of the source. How many temperatures do you need?
- d) What if temperature control of R_s isn't available, but its temperature is known. How could you measure noise figure in this case?