## University of Michigan EECS 522: Analog Integrated Circuits Winter 2009

## Problem Set 7

## Issued 4/1/2008 – Due 4/8/2008

**Problem 7.1:** For this problem, assume the LO is a square wave at 900MHz, and the RF signal is a tone at 1GHz.

- a) Considering only the first harmonic component of the LO signal, what frequencies appear at the output of the mixer? Assume the mixer is perfectly balanced.
- b) Derive an expression for the conversion gain of the mixer from the RF signal to the desired component at IF.



- c) Now introduce a phase offset between the LO applied to the left and right mixers of  $\Delta\theta$ .
  - Assume  $\Delta\theta$  is small. Derive an expression for the output amplitude of the LO leakage at 900MHz as a result of the offset.

Hint:  $cos(A + \Delta) \approx cos(A) - \Delta sin(A)$  for small  $\Delta$ .

d) Using your expression for conversion gain from part b), find an expression for the ratio of LO leakage amplitude to IF signal amplitude in dBc. Assuming  $G_m v_{in} = 1\%$  of  $I_{BIAS}$  for good linearity and  $\Delta\theta = 2\pi/100$  (1%), what is the required slope of the IF filter in dB/decade to attenuate the LO signal to -40dBc below the IF signal level?

**Problem 7.2:** You may neglect  $r_o$  and base current ( $\beta = \infty$ ) for this problem.

a) Simplify L,  $C_1$ , and  $C_2$  into an equivalent parallel RLC tank. Use the series-to-parallel resistance transformations discussed in lecture to find an expression for the equivalent loss  $R_{eq}$  of the parallel tank. Assume a series loss in the inductor  $R_S$ , and an inductor  $Q_L = 10$ . Do not neglect the impedance on node  $V_x$  in your expression for  $R_{eq}$ .



- b) Derive an expression for the oscillation frequency.
- c) Now incorporating the small-signal model of the BJT, derive an expression for  $I_{BIAS}$  that biases the oscillator just at the edge of oscillation. To simplify your expression, use the definition  $n = C_1/(C_1 + C_2)$ .

**Problem 7.3:** For this problem, assume L and C are lossless, and all losses are modeled by  $R_{\text{eq}}$ .

- a) Derive and expression for the differential amplitude of the fundamental oscillation across the tank. Assume all higher-order harmonics are perfectly filtered by the tank.
- b) Replace the NMOS devices with NPNs. Explain how the amplitude is limited by the parasitic diodes in the BJTs. How would you modify the circuit to eliminate this limitation?



**Problem 7.4:** This problem refers to the bandgap reference and corresponding expression for  $\partial V_{BE}/\partial T$  shown in Lecture 22.

- a) Assuming  $V_{G0} = 1.2V$ ,  $V_{BE} = 750 \text{mV}$  at 300K, and from simulation, the exponent of  $I_S$  temperature dependency r = 2. What is the value of n, the exponent of  $I_C$  temperature dependency, determined by the circuit on the right?
- b) Using your answer from part, calculate  $\partial V_{BE}/\partial T$  at 300K and determine the value of m (BJT area scaling ratio) to cancel this slope.
- c) Now assume the resistor has a temperature dependency, typically proportional to  $\sqrt{T}$ . What is the new value of n, the exponent of I<sub>C</sub> temperature dependency, and new value of  $\partial V_{BE}/\partial T$ ?



d) Using your value of m from part b), and the value of  $\partial V_{BE}/\partial T$  from part c) calculated at 300K, what is the error voltage at V<sub>out</sub> at 0°C and 85°C, the extremes of the commercial temperature range?

## **Problem 7.5:** Use Cadence to solve this problem.

- a) Build a schematic in Cadence of an nfet\_rf with W=1um, L=130nm. Include independent gate and drain bias voltage sources. Include a transient sinusoidal source at the input.
- b) Simulate the 1dB compression point of the short-circuit output current to a sinusoidal input voltage at a frequency of 10MHz. Bias the transistor at three separate current densities: 25uA/um, 75uA/um, and 200uA/um. This corresponds to alpha of 1, 0.75, and 0.5. For each bias point, set the drain bias voltage to the gate voltage for the corresponding current density. Hand in a plot of the output current showing the 1dB compression point for the three bias points.
- c) Simulate the OIP3 of the short-circuit output current to a sinusoidal input voltage at frequencies of 10MHz and 10.1MHz. Bias the transistor at the same current densities and drain voltages as part b): 25uA/um, 75uA/um, and 200uA/um. Hand in a plot of the output current showing the OIP3 point for the three bias points.